-2b,a以及a与bb所成角的余弦值,并确定λ、μ的关系,使λa+μb与z轴垂直.答案解析λ=2μ∵2a+3b=235,-4+3218=121316,
3a-2b=335,-4-2218=513,-28,ab=35,-4218=3×2+5×1-4×8=-21,a=32+52+-42=50,
fb=22+12+82=69,-21ab7138∴cos〈a,b〉=ab==-2305069由λa+μb001=3λ+2μ,5λ+μ,-4λ+8μ001=-4λ+8μ=0知,只要λ,μ满足λ=2μ即可使λa+μb与z轴垂直.16.已知PA垂直于正方形ABCD所在的平面,M、N分别是AB、PC的中→→点,并且PA=AD=1求MN、DC的坐标.解析∵PA=AD=AB,且PA⊥平面AC,AD⊥AB,
→→→∴可设DA=e1,AB=e2,AP=e3以e1、e2、e3为坐标向量建立空间直角坐标系A-xyz,→→→→→→1→∵MN=MA+AP+PN=MA+AP+2PC→→1→→→=MA+AP+2PA+AD+DC1111=-2e2+e3+2-e3-e1+e2=-2e1+2e3,→→11∴MN=-2,0,2,DC=010.17.已知平行六面体ABCD-A1B1C1D1中,底面ABCD是边长为1的正方形,AA1=2,∠A1AB=∠A1AD=120°1求线段AC1的长;2求异面直线AC1与A1D所成角的余弦值;3证明:AA1⊥BD解析1解→→→如图所示,设AB=a,AD=b,AA1=c,
则a=b=1,c=2
fab=0,ac=bc=2×1×cos120°=-1→→→→∵AC1=AB+BC+CC1=a+b+c,→∴AC12=a+b+c2=a2+b2+c2+2ab+2ac+2bc=1+1+22-2-2=2→∴AC1=2即AC1长为22解→→∵AC1=a+b+c,A1D=b-c,
→→∴AC11D=a+b+cAb-c=ab-a2-bc+bc+b2c-c=1+12-22=-2→又A1D2=b-c2=b2+c2-2bc=1+4+2=7,→∴A1D=7→→→→-2-14AC11DA∴cos〈AC1,A1D〉===7→→2×7AC11DA14∴异面直线AC1与A1D所成角的余弦值为73证明→→∵AA1=c,BD=b-a,
→→∴AA1=cBDb-a=cb-ca=-1--1=0→→∴AA1⊥BD,即AA1⊥BD
fr