m
11,得1222,解得13122m
121
因为BD6,故DE6320.(本题满分12分)解:(I)设l1的方程为ykx2与椭圆联立得2k21x242k2x4k240
2直线经过椭圆内一点,故0恒成立,设Ax则x3x4422k,3y3Bx4y4,2k1
x3x44k242k1
2
x3x42x3x424x3x4
21x3x44k22k1
2422232k444k1162kk12k116k1,2222222k12k12k12k12
2AB1k2x3x44k243解得k2,l1的方程为y2x1或y2x1;2k1222
2k23,解得k2解2:由焦半径公式有AB2aex3x442422k44222k12k12
(II)设l2的方程为myx2与椭圆联立:m21y222y20,由于过椭圆内一点,
0
假设存在点Tt0符合要求,设Px1y1Qx2y2,韦达定理:
2y1y2222m,y1y22m2m2
fOTPOTQ
y1y20y1x2ty2x1t0,点在直线myx2上有x1tx2t
y1my22ty2my12t0,即2my1y22ty1y20,
22t22m0,2m2m2m22
解得t22
21.(本题满分12分)解:(I)当m1时gxx1exx2gxexx1ex2xxex2xxex2令gx0得x10x2l
2当x变化时gxgx的变化如下表
x
fxfx
0
0
0
0l
2
l
2
0
l
2
极大值
极小值
由表可知gx极小gl
2l
222l
22;gx极大g01;(II)设m0,fxemxmx2,f010,若fx0要有解,需fx有单减区间,则fx0要有解
fxmemx2mxmemx2x,由m0,f0m0,记fx为函数fx的导数
则fxmmemx2,当m0时fx单增,令fx0,由m0,得x01l
2,需mm考察x0与区间0的关系:①当m2时,l
20,x00,在0上fxfx00,fx单增,m
fxf0m0
故fx单增,fxf01,fx0无解;
l
20,x01l
20,②当m2,时,因为fr