全球旧事资料 分类
(x2)时总有x1x2,则称f(x)为单函数∴①函数f(x)x2不是单函数,∵f(1)f(1),显然1≠1,∴函数f(x)x2(x∈R)不是单函数;
②∵函数f(x)2x(x∈R)是增函数,∴f(x1)f(x2)时总有x1x2,即②正确;
③∵f(x)为单函数,对于任意b∈B,若x1≠x2,使得f(x1)f(x2)b,则x1x2,与x1≠x2矛盾∴③正确;
④例如①函数f(x)x2在(0,∞)上是增函数,而它不是单函数;故④不正确.故答案为:②③.
三、解答题(共6小题,满分74分)17.(12分)(2011四川)已知函数f(x)si
(x(Ⅰ)求f(x)的最小正周期和最小值;
)cos(x
),x∈R
f(Ⅱ)已知cos(βα),cos(βα)0<α<β,求证:f(β)220.【分析】(Ⅰ)利用诱导公式对函数解析式化简整理,进而根据三角函数的周期性和值域求解.(Ⅱ)利用两角和公式把已知条件展开后相加,求得β的值,代入函数解析式中求得答案.【解答】解:(Ⅰ)f(x)si
(x)cos(x)si
(x)si
(x
)2si
(x)∴T2π,最小值为2(Ⅱ)∵cos(βα)cosβcosαsi
βsi
α,cos(βα)cosβcosαsi
βsi
α,两式相加得2cosβcosα0,∵0<α<β,
∴β
∴f(β)224si
220
18.(12分)(2011四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时.(Ⅰ)求甲乙两人所付的租车费用相同的概率.(Ⅱ)设甲乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望Eξ.【分析】(Ⅰ)首先求出两个人租车时间超过三小时的概率,甲乙两人所付的租
f车费用相同即租车时间相同:都不超过两小时、都在两小时以上且不超过三小时和都超过三小时三类求解即可.(Ⅱ)随机变量ξ的所有取值为0,2,4,6,8,由独立事件的概率分别求概率,列出分布列,再由期望的公式求期望即可.【解答】解:(Ⅰ)甲乙两人租车时间超过三小时的概率分别为:,
甲乙两人所付的租车费用相同的概率p
(Ⅱ)随机变量ξ的所有取值为0,2,4,6,8
P(ξ0)

P(ξ2)

P(ξ4)

P(ξ6)

P(ξ8)

数学期望Eξ

19.(12分)(2011四川)如图r
好听全球资料 返回顶部