,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.例如屋顶的人字梁、大桥钢架、索道支架等.四、课时小结本节课我们探索得到了三角形全等的条件,发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.五、布置作业必做题:课本P43页习题122中的第1,选做题:第2题六、板书设计:11.21三角形全等判定(1)
一、复习导入二、尝试活动探索新知三、应用新知解决问题四、总结提高【教学反思】
8
f第周
第
课时
执笔人:
备课组长:
课【教学目标】:
题:
1222
三角形全等的条件《2》
互动调控
知识与技能:理解三角形全等的“边角边”的条件.掌握三角形全等的“SAS”条件,了解三角形的稳定性.能运用“SAS”证明简单的三角形全等问题.过程与方法:经历探究全等三角形条件的过程,体会利用操作、归纳获得数学规律的过程.掌握三角形全等的“边角边”条件.在探索全等三角形条件及其运用过程中,培养有条理分析、推理,并进行简单的证明.情感态度与价值观:通过画图、思考、探究来激发学生学习的积极性和主动性,并使学生了解一些研究问题的经验和方法,开拓实践能力与创新精神.教学重点三角形全等的条件.教学难点:寻求三角形全等的条件.教学方法采用启发诱导,实例探究,讲练结合,小组合作等方法。学情分析:这节课是学了全等三角形的边边边后的一节课、中间的边变为角探讨、学生一定能理解,根据之前的学情、学好这一节课有把握。课前准备全等三角形纸片、三角板、【教学过程】:一、创设情境,导入新课师在上节课的讨论中,我们发现三角形中只给一个条件或两个条件时,都不能保证所画出的三角形一定全等.给出三个条件时,有四种可能,能说出是哪四种吗?生三内角、三条边、两边一内角、两内角一边.师很好,这四种情况中我们已经研究了两种,三内角对应相等不能保证两三角形一定全等;三条边对应相等的两三角形全等.今天我们接着研究第三种情况:“两边一内角”.(一)问题:如果已知一个三角形的两边及一内角,那么它有几种可能情况?生两种.1.两边及其夹角.
赤矶课堂9备课组教案
f第
周
第
课时
执笔人
责任人
互动调控
2.两边及一边的对角.师按照上节方法,我们有两个问题需要探究.(二)探究1:先画一个任意△ABC,再画出一个△ABC,使ABAB、ACAC、∠Ar