;
5
f由题意得:∠EBD∠DBC,∴∠EDB∠EBD,∴EBEDx;由勾股定理得:BEABAE,即x4(8x),解得:x5,∴ED5.故选:C.点评:本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.
222222
【拓展演练】1(2015江苏泰州,第16题3分)如图,矩形ABCD中,AB8,BC6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OEOD,则AP的长为.
2,(2015宁夏第15题3分)如图,在矩形ABCD中,AB3,BC5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.
6
f3(2015青海西宁第20题2分)如图,△ABC是边长为1的等边三角形,BD为AC边上的高,将△ABC折叠,使点B与点D重合,折痕EF交BD于点D1,再将△BEF折叠,使点B于点D1重合,折痕GH交BD1于点D2,依次折叠,则BD
.
4(2015滨州第17题4分)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为.
7
f5(2014上海,第18题4分)如图,已知在矩形ABCD中,点E在边BC上,BE2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设ABt,那么△EFG的周长为(用含t的代数式表示).
6(2014山西,第23题11分)课程学习:正方形折纸中的数学.动手操作:如图1,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B′.数学思考:(1)求∠CB′F的度数;(2)如图2,在图1的基础上,连接AB′,试判断∠B′AE与∠GCB′的大小关系,并说明理由;解决问题:(3)如图3,按以下步骤进行操作:第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;
8
f第二步:沿直线CG折叠,使B点落在EF上,对应点为B′,再沿直线AH折叠,使D点落在EF上,对应点为D′;第三步:设CG、AH分别与MN相交于点P、Q,连接B′P、PD′、D′Q、QB′,试判断四边形B′PD′Q的形状,并证明你的结论.
【拓r