全球旧事资料 分类
二次函数的图像特征教学难点:例2的解题思路与解题技巧。教学设计:一、回顾知识1、二次函数yaxmk的图像和yax的图像之间的关系。
22
2、讲评上节课的选作题对于函数yx2x1,请回答下列问题:
2
9
f(1)对于函数yx2x1的图像可以由什么抛物线,经怎样平移得到的?
2
(2)函数图像的对称轴、顶点坐标各是什么?
yx22x1思路:把yx22x1化为yaxm2k的形式。
x2x1x2x12x12x12
2222



在yx12中,m、k分别是什么?从而可以确定由什么函数的图像经怎样
2
的平移得到的?二、探索二次函数yaxbxc的图像特征
2
1、问题:对于二次函数yaxbxc(a≠0)的图象及图象的形状、开口方向、位置又是怎样的?学生有难度时可启发:通过变形能否将yaxbxc转化为yaxm2k的形式?
yax2bxc
ax
2
bcbbbcb4acb2xax2x22ax2aaa2a2aa2a4a
22
由此可见函数yaxbxc的图像与函数yax的图像的形状、开口方向均相同,只是位置不同,可以通过平移得到。练习:课本第37页课内练习第2题(课本的例2删掉不讲)2、二次函数yaxbxc的图像特征
2
(1)二次函数yaxbxca≠0的图象是一条抛物线;
2
4acb2bb(2)对称轴是直线x,顶点坐标是为(,)4a2a2a
3当a0时,抛物线的开口向上,顶点是抛物线上的最低点。当a0时,抛物线的开口向下,顶点是抛物线上的最高点。三、巩固知识1、例1、求抛物线y
125x3x的对称轴和顶点坐标。22
有由学生自己完成。师生点评后指出:求抛物线的对称轴和顶点坐标可以采用配方法或者是用顶点坐标公式。2、做一做课本第36页的做一做和第37页的课内练习第1题
10
f3、(补充例题)例2已知关于x的二次函数的图像的顶点坐标为(1,2),且图像过点(1,3)。(1)求这个二次函数的解析式;(2)求这个二次函数的图像与坐标轴的交点坐标。此小题供血有余力的学生解答分析与启发:(1)在已知抛物线的顶点坐标的情况下,将所求的解析式设为什么比较简便?4、练习:(1)课本第37页课内练习第3题。(2)探究活动:一座拱桥的示意图如图(图在书上第37页),当水面宽12m时,桥洞顶部离水面4m。已知桥洞的拱形是抛物线,要求r
好听全球资料 返回顶部