实数域的傅立叶级数展开入手,立刻可以得到形式更简单的,复数域的,和实数域一一对应的傅立叶复数级数。因为复数域形式简单,所以研究起来方便虽然自然界不存在复数,但是由于和实数域的级数一一对应,我们做个反映射就能得到有物理意义的结果。那么傅立叶变换,那个令人难以理解的转换公式是什么含义呢我们可以看一下它和复数域傅立叶级数的关系。什么是微积分,就是先微分,再积分,傅立叶级数已经作了无限微分了,对应无数个离散的频率分量冲击信号的和。傅立叶变换要解决非周期信号的分析问题,想象这个非周期信号也是一个周期信号只是周期为无穷大,各频率分量无穷小而已否则积分的结果就是无穷。那么我们看到傅立叶级数,每个分量常数的求解过程,积分的区间就是从T变成了正负无穷大。而由于每个频率分量的常数无穷小,那么让每个分量都去除以f,就得到有值的数所以周期函数的傅立叶变换对应一堆脉冲函数。同理,各个频率分量之间无限的接近,因为f很小,级数中的f,2f,3f之间几乎是挨着的,最后挨到了一起,和卷积一样,这个复数频率空间的级数求和最终可以变成一个积分式:傅立叶级数变成了傅立叶变换。注意有个概念的变化:离散的频率,每个频率都有一个