0
∴当x→0时fxgxOxab
∵ta
xsi
xta
x1cosx
而当x→0时ta
xOx1cosxOx2
由前面所证的结论知ta
x1cosxOx3
所以当x→0时ta
xsi
x是x的3阶无穷小量
4利用等价无穷小量求下列极限:
1limsi
axb≠0;x0ta
bx
2
lim
x0
1
coskxx2
;
3liml
1x;x01x1
4lim21cosx;
x0
1x21
5limarcta
x;x0arcsi
x
eaxebx6lim
a≠b;
x0si
axsi
bx
7liml
cos2x;x0l
cos3x
解1limsi
axlimaxax0ta
bxx0bxb
8
设limx0
f
xx2
3
=100求
lim
x0
fx
1coskx
2limx0
x2
limx0
1kx22
x2
1k22
3liml
1xlimx2x01x1x0x
2
4limx0
2
1cosx1x21
lim
x0
1
x2
cos2
x
1x21
1cosx
limx0
1x22
x22
1x21
1cosx
lim
x02
12
x211cos
x
24
精品文档
f精品文档
5limarcta
xlimx1x0arcsi
xx0x
6
lim
x0
eaxsi
ax
ebxsi
bx
lim
x0
eax1ebx12cosabxsi
a
b
x
2
2
lim
eax1
lim
ebx1
x02cosabxsi
abxx02cosabxsi
abx
2
2
2
2
lim
ax
lim
bx
x02cosabxabxx02cosabxabx
2
2
2
2
lim
a
lim
b
x0abcosabxx0abcosabx
2
2
abab1ababab
7limx0
l
l
cos2xcos3x
lim
x0
l
1l
1
cos2xcos3x
11
lim
x0
cos2xcos3x
11
1cos2xlim
x01cos3x
limx0
12x2213x2
4x2
lim
x0
9
x
2
49
2
8由limx0
f
x3x2
100及limx2x0
0知必有limx0
f
x30
即
limfx3limfx30
x0
x0
所以
limfx3
x0
习题271研究下列函数的连续性,并画出函数的图形:
x310x11fx
3x1x2
2
fx=
1
x1x1,x1或x1
解1limfxlimx311f0
x0
x0
∴fx在x0处右连续
又limfxlim3x2
x1
x1
limfxlimx312
x1
x1
limfxlimfx2f1
x1
x1
精品文档
f精品文档
∴fx在x1处连续
又
limfxlim3x1f2
x2
x2
∴fx在x2处连续又fx在0112显然连续综上所述fx在02上连续图形如下
图21
2limfxr