;x0x
10liml
1xl
xlim1l
1x
x
x
xx
x
lim1l
11lim1liml
110;
xx
xxxx
x
x
11
lim
x
32x22x
x
lim
x
1
2
12x
x
lim
x
1
2
12x
22x
22x
lim
x
1
122x
22x
e
x
1
lim
x22x2
lim
x
32
2x2x
x
1
e2
;
12
lim1
x
1xx2
lim
x
1
1
1x2
x2
x
1
limel
1
1x2
x2
x
x
elim1xx
l
1
1x2
x2
lim1liml
11x2
exxxx2e0l
ee01;
精品文档
f精品文档
13令arcsi
xu,则xsi
u,当x0,u0,
limarcsi
xlimu11;
x0x
u0si
ulimsi
u
u0u
14令arcta
xu,则xta
u,当x0,u0,
limarcta
xlimulimucosulim1limcosu1
x0x
u0ta
uu0si
u
u0si
uu0
u
习题26
1证明:若当x→x0时,x→0βx→0且x≠0,则当x→x0时,x~βx的充
要条件是limxx=0xx0x
证:先证充分性
若limxx=0,则lim1x=0
xx0x
xx0
x
即1limx0,即limx1
xx0x
xx0x
也即
lim
xx0
xx
1
,所以当
x
x0
时,x
x
再证必要性:
若当xx0时,x
x,则limx1,xx0x
所以limxx0
xxx
=limxx0
1x=1lim
x
xx0
xx
1
1limx
11
0
xx0x
综上所述,当x→x0时,x~βx的充要条件是limxx=0xx0x
2若βx≠0,limβx0且limx存在,证明limx0
xx0
xx0x
xx0
证:limxlimxxlimxlimxlimx00
xx0
xx0x
xxx0
xx0
xx0x
即
limx0
xx0
精品文档
f精品文档
3证明:若当x→0时,fxoxa,gxoxb,则fxgx=oxab,其中ab都大于
0,并由此判断当x→0时,ta
x-si
x是x的几阶无穷小量
证∵当x→0时fxoxa,gxoxb
∴limx0
fxxa
AA
0limx0
gxxb
BB
0
于是
lim
x0
f
xgxxab
lim
x0
fxxa
gxxb
lim
x0
fxxa
limx0
gxxb
AB
r