全球旧事资料 分类
;x0x
10liml
1xl
xlim1l
1x
x
x
xx
x
lim1l
11lim1liml
110;
xx
xxxx
x
x
11
lim
x

32x22x
x


lim
x
1

2
12x
x


lim
x
1
2
12x
22x

22x
lim
x
1

122x
22x


e
x
1
lim

x22x2

lim
x

32
2x2x
x


1
e2

12
lim1
x
1xx2

lim
x
1

1
1x2
x2

x
1
limel

1
1x2

x2

x
x
elim1xx
l
1
1x2
x2
lim1liml
11x2
exxxx2e0l
ee01;
精品文档
f精品文档
13令arcsi
xu,则xsi
u,当x0,u0,
limarcsi
xlimu11;
x0x
u0si
ulimsi
u
u0u
14令arcta
xu,则xta
u,当x0,u0,
limarcta
xlimulimucosulim1limcosu1
x0x
u0ta
uu0si
u
u0si
uu0
u
习题26
1证明:若当x→x0时,x→0βx→0且x≠0,则当x→x0时,x~βx的充
要条件是limxx=0xx0x
证:先证充分性
若limxx=0,则lim1x=0
xx0x
xx0
x
即1limx0,即limx1
xx0x
xx0x
也即
lim
xx0
xx

1
,所以当
x

x0
时,x
x
再证必要性:
若当xx0时,x
x,则limx1,xx0x
所以limxx0
xxx
=limxx0
1x=1lim
x
xx0
xx

1
1limx
11
0
xx0x
综上所述,当x→x0时,x~βx的充要条件是limxx=0xx0x
2若βx≠0,limβx0且limx存在,证明limx0
xx0
xx0x
xx0
证:limxlimxxlimxlimxlimx00
xx0
xx0x
xxx0
xx0
xx0x

limx0
xx0
精品文档
f精品文档
3证明:若当x→0时,fxoxa,gxoxb,则fxgx=oxab,其中ab都大于
0,并由此判断当x→0时,ta
x-si
x是x的几阶无穷小量
证∵当x→0时fxoxa,gxoxb
∴limx0
fxxa

AA
0limx0
gxxb

BB

0
于是
lim
x0
f
xgxxab

lim
x0
fxxa

gxxb

lim
x0
fxxa
limx0
gxxb

AB
r
好听全球资料 返回顶部