小量得:
lim
1
1
2
cos
0
;
(3)lim
2
lim
2
2
而lim
2
2
lim
1
2
1
3
1
1
30,
lim
2
lim
2
;
2
(4)
lim
2
2
1
3
3
1
1
12
1
lim
333
1
12
11
1;3
3
精品文档
f精品文档
11
(5)
lim
1
21
3
11
12
12
13
11lim2
11
13
411
1
lim
2
311
1
3
4
3
113
6求下列极限:
1
lim
x3
x3;x29
2
lim
x1
2x3;x25x4
6x34
3
lim
x
2x43x2
si
xcosx
4lim
xcos2x
2
xh3x3
5lim
h0
h
6lim
2x33
x3x12
xx2x
7lim
x1
x1
8limxsi
x;xxsi
x
9limx2xx2x;x
11limx2si
1
x0
x
10
lim
x1
11
x
31x3
;
解:
1limx3
x3x29
lim
x3
x
x33x
3
lim
x3
x
1
3
16
(2)limx25x40lim2x31
x1
x1
limx25x40即x12x3
lim
x1
2x3x25x
4
(3)
lim
x
6x342x43x2
limx
6x
4x4
2
3x2
0;
(4)limsi
xcosx
si
π2
cos
π2
1;
xπcos2x
cosπ
2
(5)limxh3
x3
xh
lim
xxh2
xhx
x2
h0
h
h0
h
精品文档
f精品文档
lim
h0
x
h2
x
hx
x2
3x2
;
(6)lim2x33lim2x39x12x3x12x3x142x33
lim2x3x12lim2x124;x3x32x33x32x333
(7)limxx2
x
x1x21
lim
x
1
x1
x1
x1
x1
lim
x1
1
x
1
x2
x
1
x
1x
2
(8)
123
1
1;2
limsi
x0(无穷小量1与有界函数si
x之积为无穷小量)
xx
x
lim
xsi
x
1lim
si
xx
1;
xxsi
xx1si
x
x
(9)limx2xx2xlimx2xx2x
x
xx2xx2x
x1
limx
2x
lim
x2xx2xx
2
1;
1111
x
x
(10)limx1
11x
3r