全球旧事资料 分类
小量得:
lim

1
1
2

cos



0

(3)lim
2
lim

2



2

而lim

2
2

lim

1
2

1
3

1
1
30,
lim
2
lim

2




2

(4)
lim

2
2
1
3
3
1

1
12
1
lim
333

1
12
11

1;3
3
精品文档
f精品文档
11
(5)
lim

1

21

3
11
12

12


13

11lim2
11
13
411
1
lim
2

311
1
3
4
3
113
6求下列极限:
1
lim
x3
x3;x29
2
lim
x1
2x3;x25x4
6x34
3
lim
x
2x43x2
si
xcosx
4lim

xcos2x
2
xh3x3
5lim

h0
h
6lim
2x33

x3x12
xx2x

7lim

x1
x1
8limxsi
x;xxsi
x
9limx2xx2x;x
11limx2si
1
x0
x
10
lim
x1
11
x
31x3


解:
1limx3
x3x29

lim
x3
x
x33x
3

lim
x3
x
1
3

16
(2)limx25x40lim2x31
x1
x1
limx25x40即x12x3
lim
x1
2x3x25x
4


(3)
lim
x
6x342x43x2
limx
6x

4x4
2

3x2
0;
(4)limsi

xcosx

si

π2
cos
π2

1;
xπcos2x
cosπ
2
(5)limxh3

x3

xh
lim
xxh2
xhx
x2
h0
h
h0
h
精品文档
f精品文档

lim
h0

x

h2


x

hx

x2


3x2

(6)lim2x33lim2x39x12x3x12x3x142x33
lim2x3x12lim2x124;x3x32x33x32x333
(7)limxx2
x

x1x21
lim
x
1
x1
x1
x1
x1

lim
x1
1
x
1


x2

x
1

x
1x
2
(8)
123
1
1;2
limsi
x0(无穷小量1与有界函数si
x之积为无穷小量)
xx
x
lim
xsi

x

1lim
si
xx
1;
xxsi
xx1si
x
x
(9)limx2xx2xlimx2xx2x
x
xx2xx2x
x1
limx
2x
lim
x2xx2xx
2
1;
1111
x
x
(10)limx1
11x
3r
好听全球资料 返回顶部