全球旧事资料 分类
Asi
2x所以A2,fx2si
2x
5656……2分,f02si
561……4分(A0,xR)的最小值为2,
⑵函数fx的图象向左平移(0)个单位长度,得y2si
2x
56……6分的图像关于y轴对称,
因为y2si
2x所以20解得
656k2
56

2
kkZ……8分
kZ……10分
因为0,所以的最小值为

3
……12分
3、(揭阳市2013届高三3月第一次高考模拟)在ABC中,角ABC所对的边分别为
abc,且满足csi
A
3acosC.
(1)求角C的大小;(2)求3si
Asi
B
2的最大值,并求取得最大值时角AB的大小.
解:(1)由csi
A3acosC结合正弦定理得,
asi
A

c3cosC

csi
C
2分


si
C
3coCs

ta
C
3

4分∵
0C


C

3

6分(2)由(1)知2BA7分
3

3si
Asi
B

2

3si
AcosB8分3si
Acos23A
f
3si
Acos
23
cosAsi

23
si
A9分

32
si
A
12
cosAsi
A

6
10
分∵0A当
A
23
,∴
2

6
A

6

56

6



3si
Asi
B

2







11分此时.AB
33
12分4、(梅州市2013届高三3月总复习质检)已知△ABC的内角A,B,C的对边分别为a,b,c,满足3si
CcosCcos2C(1)求角C(2)若向量m1si
A与
2si
B共线,且c=3,求a、b的值。

12

5、(汕头市2013届高三3月教学质量测评)△ABC中内角ABC的对边分别为a,b,c向量m2si
A22A
cosA2cos1,且m
。43,
(I)求角A的大小;(II)若a
7且△ABC的面积为
332
,求b十c的值。
f

解:(1)m
3cosA2si

3cosA2si
A22cos
2
A2
2cosA2
2
A4A2
1………………………(2分)si
A………………………(4分)
A4
12si
A12
cos
ta
A
3
又A0
12

3
………………………………………………(6分)
3323…r
好听全球资料 返回顶部