P则点P满足APDE证明如下:∵AFCECE1∴BMCE且BMCE且∴四边形BMEC是平行四边形∴BCMEBCME又菱形ABCD中BCADBCAD∴MEADMEAD∴四边形ADEM是平行四边形∴AMDE即APDE∵BMAF∴BPM
FPA又BM1∴
BPBM1PFAF2
20解:(1)设椭圆的右焦点为F1,则OM为AFF1的中位线,
fAFAF111a5AF1MFAF,所以OMMF222c25因为e,所以c25a5
所以OM
所以b5,所以椭圆C的方程为
x2y21255
(2)设Ax1y1Bx2y2
ykxm联立x2y2消去y整理得:15k2x210mkx5m22501255
10km5m225xx1215k215k22m所以y1y2kx1x22m15k2
所以0,x1x2
y1y2kx1mkx2mk2x1x2kmx1x2m2
5k2m225k210k2m2m25k2m225k2m215k215k2
因为P01PAPB4所以x1y11x2y21x1x2y1y2y1y214所以
5m22525k2m22m502215k15k15k2
整理得:3m2m100
5解得:m2或m(舍去)3
所以直线l过定点0221解:(1)依题意,fxxex,故原不等式可化为xexex2,因为x0,只要证exex0,记gxexexx0,则gxexex0当0x1时,gx0,gx单调递减;当x1时,gx0,gx单调递增所以gxg10,即fxex2,原不等式成立
f1121(2)fxexax2axxexaxa3232
x1exaxx1
x1exax
记hxexaxhxexa
1()当a0时,hxexa0,hx在R上单调递增,h010,hea10a
1所以存在唯一x00hx00,且当xx0时,hx0;当xx0hx0a
1
1①若x01,即a时,对任意x1fx0,此时fx在R上单调递增,无极值点e1②若x01,即a0时,此时当xx0或x1时,fx0即fx在e
x01r