全球旧事资料 分类
值为21.20.已知函数fxxxa2x.(1)若函数fx在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈12时,函数fx的图象恒在函数gx2x1图象的下方;(3)若存在a∈44,使得关于x的方程fxtfa有三个不相等的实数根,求实数………16分
1
t的取值范围.
x22axx≥a20.解:(1)fxxxa2x2x2axxa2aa≥2由fx在R上是增函数,则即2≤a≤2,则a范围为2≤a≤2;…4分a≤2a2(2)由题意得对任意的实数x∈12,fxgx恒成立,111即xxa1,当x∈12恒成立,即xa,xa,xxx1111xax,故只要xa且ax在x∈12上恒成立即可,xxxx
双高教育劲松家教wwwggjiaoyucom
910976329报名优惠中
f双高教育劲松家教wwwggjiaoyucom
在x∈12时,只要x
910976329报名优惠中
11的最大值小于a且x的最小值大于a即可,………6分xx1′1113而当x∈12时,x120,x为增函数,x;xxxxmax21′111当x∈12时,x120,x为增函数,x2,xxxmi
x3所以a2;…………………10分2(3)当2≤a≤2时,fx在R上是增函数,则关于x的方程fxtfa不可能有三个不等的实数根;………11分2x2axx≥a则当a∈24时,由fx2得x2axxa
a2a,2则fx在x∈a∞为增函数,此时fx的值域为fa∞2a∞,a2xa时,fxx22ax对称轴xa,2a2a22则fx在x∈∞为增函数,此时fx的值域为∞,42
x≥a时,fxx22ax对称轴x
a2fx在x∈2
a22a为减函数,此时fx的值域为2a;4,
a22由存在a∈24,方程fxtfa2ta有三个不相等的实根,则2ta∈2a4a22a2214a4,即存在a∈24,使得t∈1即可,令ga8a8a8a9只要使tgamax即可,而ga在a∈24上是增函数,gamaxg4,89故实数t的取值范围为1;…………………15分89同理可求当a∈42时,t的取值范围为1;89综上所述,实数t的取值范围为1.8
……………16分
双高教育劲松家教wwwggjiaoyucom
910976329报名优惠中
f双高教育劲松家教wwwggjiaoyucom
910976329报名优惠中
双高教育劲松家教wwwggjiaoyucom
910976329报名优惠中
fr
好听全球资料 返回顶部