价为6m÷3m2;乙共花费3×2m÷(2m÷182m÷222m÷2)199<2;∴乙比甲便宜.故选B.【点评】本题考查了分式的加减运算.解决本题首先应通分,最后要注意将结果化为最简分式.
二、填空题:11.据统计,某学校教师中年龄最大的为54岁,年龄最小的为21岁.那么学校教师年龄的极差是33.【考点】极差.【分析】根据极差的定义即可求得.【解答】解:∵最大的为54岁,年龄最小的为21岁,∴学校教师年龄的极差是542133岁.故答案为:33.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.
12.若一组数据的方差为16,那么这组数据的标准差为4.【考点】标准差;方差.【分析】根据标准差即方差的算术平方根即可得出答案.【解答】解:∵一组数据的方差为16,∴这组数据的标准差为故答案为:4.【点评】此题考查了标准差,掌握标准差即方差的算术平方根是本题的关键.4.
13.黎老师给出4个连续奇数组成一组数据,中位数是8,请你写出这4个数据:5,7,9,11.【考点】中位数.【分析】设这4个连续奇数为2x3,2x1,2x1,2x3,然后根据中位数的概念求解.【解答】解:设这4个连续奇数为2x3,2x1,2x1,2x3,
f数学
则解得:x4,
8,
则这4个奇数为:5,7,9,11.故答案为:5,7,9,11.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
14.第一小组共6名学生,在一次“引体向上”的测试中,他们分别做了:8,10,8,7,6,9个.这6名学生平均每人做了8(个).【考点】算术平均数.【专题】计算题;压轴题.【分析】只要运用求平均数公式:即可求出,为简单题.
【解答】解:平均数(8108769)÷68(个).∴这6名学生平均每人做了8个.故答案为8.【点评】本题考查的是样本平均数的求法.熟记公式是解决本题的关键.
15.现有一组数据9,11,11,7,10,8,12是中位数是m,众数是
,则关于x,y的方程组的解是:.
【考点】解二元一次方程组;中位数;众数.【专题】计算题;一次方程(组)及应用.【分析】找出数据的中位数与众数,确定出m与
的值,代入方程组求出解即可.【解答】解:数据9,11,11,7,10,8,12按照从小到大顺序排列为:7,8,9,10,11,11,12,∴中位数r