全球旧事资料 分类
点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为x1,
y1、x2,y2.用含S的代数式表示x2-x1,并求出当S36时点A1的坐标;
9
f(3)在图1中,设点D的坐标为1,3,动点P从点B出发,以每秒1个单位长度的速度沿着线段
BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;
若不存在,请说明理由.
10
f一、参考答案:
二、填空题:13、.4w14421512163217.wkdrcWwxKb1coM
三、解答题:18.1原式17352.
1a24a4a2aa1a(2).解:122a1aaa1a2a2
19解:(1)把x1y3代入y
m3,m1×33∴y2分xx
把x1y
111代入ykx,k∴yx4分XkB1cOm333
11
f由
131x,解得:x±3∵点A在第一象限,∴x3当x3时,y31,3x3
(2)3x0或x39分
∴点A的坐标(31)7分
20、(1)AB=AC,易证∠BAD=∠CAE,AD=AE,所以△BAD≌△CAE(SAS)。(2)BD⊥CE,证明略。httpwwwxkb1com22(1)BD2CE;2分(2)结论BD2CE仍然成立3分
D
证明:延长CE、AB交于点G∵∠1∠2,∠1∠3,∠2∠4,∴∠3∠4又∵∠CEB∠GEB90°,BEBE
A
∴△CBE≌△GBE
∴CEGE,
∴CG2CE5分
F
∵∠D∠DCG∠G∠DCG90°∴∠D∠G,∴si
∠Dsi
∠G∴
ABAC∵ABAC,∴BDCG2CE8分BDCG
21B43E
C
G
(说明:也可以证明△DAB∽△GAC)(3)2
9分22(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元则10a+5b=10005a+3b=550a=50b=100
∴解方程组得
∴购进一件A种纪念品需要50元,购进一件B种纪念品需要100元(2)设该商店购进A种纪念品x个,购进B种纪念品y个50x+100y=100006y≤x≤8y∴
解得20≤y≤25∵y为正整数∴共有6种进货方案
12
f(3)设总利润为W元
W=20x+30y=20200-2y+30y=-10y+400020≤y≤25
∵-10<0∴W随y的增大而减小∴当y=20时,W有最大值
W最大=-10×20+4000=3800元
∴当购进A种纪念品160件,B种纪念品20件时,可获最大利润,最大利润是3800元23.解:(1)四边形OCED是菱形r
好听全球资料 返回顶部