2011年全国各地中考数学压轴题专集答案
八、圆1.(1)证明:连接OC∵点C在⊙O上,OA=OC,∴∠OCA=∠OAC∵CD⊥PA,∴∠CDA=90°,∴∠DCA+∠DAC=90°∵AC平分∠PAE,∴∠DAC=∠OAC∴∠DCO=∠DCA+∠OCA=∠DCA+∠OAC=∠DCA+∠DAC=90°又∵点C在⊙O上,OC为⊙O的半径∴CD为⊙O的切线分5(2)解:过O作OF⊥AB,垂足为F,则∠OCD=∠CDF=∠DFO=90°∴四边形OCDF为矩形,∴OC=DF,OF=CD∵DC+DA=6,设AD=x,则OF=CD=6-x∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x在Rt△AOF中,由勾股定理得AF+OF=OA即5-x+6-x=25,解得:x1=2,x2=9由AD<DF,知0<x<5,∴x=2即AD=2,AF=5-2=3∵OF⊥AB,∴AB=2AF=612分B
22222
PDAFOEC
2.(1)证明:∵BT切⊙O于点B,∴∠EBP=∠C∵EF∥BC,∴∠AFP=∠C,∴∠AFP=∠EBP又∵∠APF=∠EPB,∴△PFA∽△PBE∴PAPF=,∴PAPB=PEPFPEPBF
(2)解:当点P在BA延长线上时,(1)中的结论仍然成立∵BT切⊙O于点B,∴∠PBE∠C∵EF∥BC,∴∠PFA=∠C,∴∠PFA=∠PBE又∵∠FPA=∠BPE,∴△PFA∽△PBE∴PAPF=,∴PAPB=PEPFPEPBE
PA
OB
C
T
(3)解法一:作直径AH,连接BH,则∠ABH=90°∵BT切⊙O于点B,∴∠EBA=∠AHB∵cos∠EBA=
2
11,∴cos∠AHB=33
2
F
PA
∵si
∠AHB+cos∠AHB=1,又∠AHB为锐角∴si
∠AHB=223
EB
OH
C
T
2011年中考数学
圆第1页
共88页
f在Rt△ABH中,∵si
∠AHB=∴AH=AB=6si
∠AHB
AB,AB=42AH
∴⊙O的半径为3解法二:作直径BH,连接AH,则∠BAH=90°∵BT切⊙O于点B,∴∠EBH=90°∵cos∠EBA=11AH,∴si
∠ABH==33BHE
22
F
PAO
H
设AH=x,则BH=3x在Rt△ABH中,AB+AH=BH
2222
C
BT
∴42+x=3x,解得x1=2,x2=-2(舍去)∴BH=6∴⊙O的半径为3
3.解:(1)作CG⊥AB于G则CG=AC-AG=BC-BG
2222222
∴36-AG=49-5-AG,解得AG=∴CG=AC-AG=
22
653612636-=255EG
CG26∴si
A==2分AC5作AH⊥BC于H则AH=AB-BH=AC-CH
2222222
AD
∴25-BH=36-7-BH,解得BH=∴AH=AB-BH=∴si
C=
22
19736112625-=497
B
H
F
C
AH26=r