a2xfxdx
0
20
2令
x
1t
则dx
1t2
dt
1dxx1x2
11
1t
1
1t2
1t3
dt
11
1t
1
t
2
dt
1t
1
dt
11t2
1x
1
dx
11x2
即
1dx
x1x2
1x
dx
11x2
x
4若ft是连续函数且为奇函数,证明ftdt是偶函数;若ft是连续函数且为偶函数,0
x
证明ftdt是奇函数0
证令Fxxftdt0若ft为奇函数则ftft从而
FxxftdttuxfuduxfuduFx
0
0
0
所以Fxxftdt是偶函数0若ft为偶函数则ftft从而
FxxftdttuxfuduxfuduFx
0
0
0
所以Fxxftdt是奇函数0
5※设fx在∞,∞内连续,且Fx
x
x2tftdt试证:若fx单调不减,则Fx
0
单调不增
证
F
x
x
xftdt
0
x0
2tf
tdx
xftdtxfx2xfx
0
8
fxftdtxfxfxxfxxffx0
其中在x与0之间当x0时x由fx单调不减有ffx0即Fx0当x0时x由fx单调不减有ffx0即Fx0综上所述知Fx单调不增
1计算下列定积分:
11xexdx0
习题64
e
2xl
xdx1
4l
x
3
dx
1x
52e2xcosxdx0
7πxsi
x2dx0
4
3
4
xsi
2
dxx
2
61xlog2xdx
e
8si
l
xdx;1
9l
2x3ex2dx0
10
12
x
l
1
xdx
01x
解
1
1xexdx
0
1xdex
0
xex
10
1exdx
0
e1ex
10
e1e1e0
12e
2
exl
xdx1
1
2
e
l
1
xdx2
12
x2
l
x
e1
12
exdx1e21x2
1
24
e1
14
e2
1
3
4l
xdx2
4
l
xd
1x
1
x2
x
l
x
41
2
41
1dx8l
24x
x
41
8l
24
4
3
x
4
si
2
dxx
3
xdcotx
x
cot
x
4
3
4
3
cot
xdx
4
π4
9
π
l
si
x
3
1
44
9
π
12
l
32
52e2xcosxdx
2e2xdsi
xe2xsi
x
2
2
2e2xsi
xdx
0
0
0
0
eπ2
2e2xdcosxeπ2e2xcosx
24
2e2xcosxdx
0
0
0
eπ242e2xcosxdx0
故
2
e2x
cos
xdx
1
eπ
2
0
5
9
f6
21
xlog2
xdx
12l
2
2
l
xdx2
1
1
2l
2
x2
l
x
21
2
xdx
1
14l
2323
2l
2
2
4l
2
7
πxsi
x2dx1
0
2
πx21cos2xdx11x3
0
23
π0
12
πx2dsi
2x
0
π36
1x24
si
2x
π0
2
πxsi
2xdxπ31
0
64
π
xdcos2x
0
π31xcos2x
64
π0
π
cosxdx
0
π36
π4
1si
2x8
π0
π36
π4
e
e
8
si
l
xdxxsi
l
x
1
e1
1
cosl
xdx
esi
1xcosl
x
e1
e
si
l
xdx
1
e
esi
1ecos111si
l
xdx
故
esi
l
xdx1esi
1ecos11
1
2
9l
2x3ex2dx1l
2x2dex21x2ex2l
2l
2xex2dx
0
20
2
0
0
l
21l
2dex2l
21ex2l
2l
21
20
20
2
10
12
x
l
r