822x2dx0
l
3dx
9l
2exex
3dx
10
2
x2
x2
2
11
3x
dx
1xx3x
12
2
cosxcos3xdx
2
解
1
3
si
x
dx
si
x
3
dx
cosx
3
cos4πcos2π0
3
3
2
dx2115x3
15
2
d5x115x113
110
5x
1112
12
51512
5
f1
31
1dx1154x41
1d54x1
54x
2
5
4x
11
1
4
2si
cos3d
2cos3dcos
1cos4
2
1
0
0
4
04
5
2
cos2
udu
2
1
cos2
2udu
12
2
du
14
2
cos
2ud2u
π
12
π2
π6
14
si
2u
2π
π6
38
6
e2
61x
dx1l
x
e2dl
x12
11l
x
1l
x
e21
2
31
7令xta
t则dxsec2tdt当x1时tπ当x3时tπ
4
3
π
于是
3
1x2
dx1x2
π
3π
4
costsi
2t
dt
1si
t
3
π4
223
3
8令x2si
t则dx2costdt当x0时t0当x2时tπ2
π
于是
2
2x2dx
π
22cos2tdt
π
21cos2tdt
t
1
si
2t
2
π
0
0
0
2
02
9令ext则xl
tdx1dt当xl
2时t2当xl
3时t3t
于是
l
3dx
l
2exex
32
dtt21
12
32
t
11
t
11
dt
12
l
tt
11
32
12
l
32
10
32
x2
dxx2
3
dx
1
2x1293
3
1
1
dx1l
2x1x23
3
x1x22
24
1l
2l
1l
21l
5
354
3
11令6xt则xt6dx6t5dt当x1时t1当x2t62
于是
2
3x
662
1621
1x
dx
x3x
1
tt2dt61
dttt1
6l
tl
t1627l
26l
1621
6
f
12
2
2
cosxcos3xdx
2
2
0
2
0
2
cosxsi
xdx
cosxsi
xdx2cosxsi
xdx0
cosxdcosx2cosxdcosx0
2
cos
32
3
x
0
2
2
cos
32
3
x
20
43
2利用被积函数的奇偶性计算下列积分值:
1
a
l
x
1x2dx
a为正常数;
a
5x3si
2x
25x42x21dx
3
2
4cos4
d
2
解1fxl
x1x2是奇函数
a
l
a
x
1x2
dx0
2
f
x
x3si
2x42x2
x是奇函数1
55
x3si
2x42x2
xdx1
0
3fcos4是偶函数
π
π
π
2π4cos4d
2
24cos4d
0
2
21cos22d
0
2
π
2212cos2cos22d0
2
π
2
3
2
cos
2
1cos4d
02
2
π
234cos2cos4d0
3
π
22si
2
π
2
1si
4
π2
3π
0
04
02
3证明下列等式:
1
ax3fx2dx1
a2
xfxdx
a为正整数;
0
20
2证明:
1dxx1x2
1x
dx
11x2
x>0;
7
f3设fx是定义在∞,∞上的周期为T的连续函数,则对任意a∈[-∞,+∞),有
aT
T
a
fxdxfxdx0
证1令x2t则xtdx1dt2t
当x0时t0当xa时ta2
于是
ax3fx2dx
a2
t
tft
1
dt1
a2tftdt1
a2xfxdx
0
0
2t20
20
即
ax3fx2dx1r