tdtx5e3x
l
2
3
cosxsi
x
cosπt
2
dt
cosxcosπt2dt
0
si
0
x
cosπt
2
dt
cos0
x
cosπt
2
dt
si
0
x
cosπt
2
dt
cosπcos2xcosxcosπsi
2xsi
x
cosπcos2xsi
xcosπsi
2xcosx
cosπsi
2xsi
xcosπsi
2xcosx
si
xcosxcosπsi
2x
d2
4dx2
πsi
xt
tdt
ddx
ddx
πsi
xt
tdt
ddx
si
x
x
xcosxsi
xsi
xxcosx
x2
x2
2求下列极限:
0
arcta
tdt
1limxx0
x2
x2
si
3tdt
2
lim
x0
0
xt2etdt
0
3limx0
xet2dt2
0
xte2t2dt
0
解
1lim
0arcta
tdt
x
lim
0x
arcta
tdt
limarcta
x
lim
1
1x2
1
x0
x2
x0
x2
x02x
x02
2
2limx0
x2si
3tdt
0
xt3etdt
0
lim
x0
x20
si
3tdt
x0
t
3etdt
si
3x22x
lim
x0
x3ex
lim2si
3x2exlim6si
3x2ex6
x0
x2
x0
3x2
3
f3lim
x0
xet2dt2
0
xte2t2dt
0
lim
x0
xet2dt
0
2
x0
te2t
2
dt
2lim
x0
xet2dtex2
0
xe2x2
2lim
x0
xet2dt
0
xex2
lim2
x0
x0
et
2
dt
xex2
lim
x0
ex2
2ex2xex2
2x
lim
x0
1
22
x2
2
3求由方程
yetdt
x
costdt0所确定的隐函数yyx的导数
0
0
解方程两边对x求导数得
eyycosx0
y
cosey
x
又由已知方程有et
y0
si
t
x0
0即ey
1
si
x
si
0
0
即ey
1si
x
于是有
y
cosey
x
cosx
si
x1
4当x为何值时,Ixxtet2dt有极值0
解Ixxex2令Ix0得驻点x0又Ixex212x2I010
所以当x0时Ix有极小值且极小值为I005计算下列定积分:
4
1xdx3
22x2xdx1
3
0
f
xdx
其中
f
x
x0
si
x
xx
2
2
4
2
max
1x2
dx
2
解
4
13
xdx
23
3
x2
43
23
3
42
3
32
23
8
3
3
22x2xdx0x2xdx1xx2dx2x2xdx
1
1
0
1
13
x3
12
x2
01
12
x2
13
x3
1
0
13
x3
12
x2
2
1
116
π
3
π
f
xdx
0
π
2xdx
0
π
πsi
2
xdx
x22
20
cos
x
ππ
2
π21
8
4
fx2
4由于
f
x
max1
x2
1
x
2
2x11x1于是1x2
2max1x2dx2
1x2dx
2
11dx
1
2x2dx
1
13
x3
12
x
11
13
x3
21
203
6
已知fx连续,且f23求limx2
x2
2t
f
ududt
x22
解
lim
x2
2t
fududt
lim
x2
2t
f
udu
dt
lim
x2
f
udu
lim
x2
f
udu
x2
x22
x2
x22
x22x2x22x2
limfx1limfx1f23
x22
2x2
2
2
1计算下列积分:
1
3
si
x
dx
习题63
dx
22115x3
1
3
1dx
154x
42si
cos3d0
5
2
cos2
udu
e2dx
6
1x1l
x
3dx
7
1x21x2r