全球旧事资料 分类
,故a2=0或a2=3由S1,S2,S4成等比数列得,S22=S1S4又S1=a2-d,S2=2a2-d,S4=4a2+2d,故2a2-d2=a2-d4a2+2d.若a2=0,则d2=-2d2,所以d=0,此时S
=0,不合题意;若a2=3,则6-d2=3-d12+2d,解得d=0或d=2因此a
的通项公式为a
=3或a
=2
-117.导学号99450256【解】1由题意得5a3a1=2a2+22,即d2-3d-4=0故d=-1或d=4
所以a
=-
+11,
∈N或a
=4
+6,
∈N2设数列a
的前
项和为S
因为d<0,由1得d=-1,a
=-
+11则当
≤11时,
a1+a2+a3+…+a
=S
=-12
2+221


≥12时,a1+a2+a3+…+a
=-S
+2S11=12
2-221
+110
-12
2+221

≤11,综上所述,a1+a2+a3+…+a
=21
2-221
+110,
≥12
18.导学号99450257【解】1在2
S
=a
+1-13
2-
-23中,

=1得2a1=a2-2
f又a1=1,所以a2=42由2
S
=a
+1-13
2-
-23,
得2S

a
+1-13
3-
2-23

所以2S
-1=
-1a
-13
-13-
-12-23
-1,
≥2,
两式相减化简得
a+
+11-a
=1,
≥2
又a22-a11=1,
所以数列a
是以1为首项,1为公差的等差数列,
所以a

,故a

2
3证明:设T
=a11+a12+…+a1

=1时,T1=a11=174;当
=2时,T2=a11+a12=1+14=5474;

≥3时,a1

12(
-11)

-11-1

此时T
=1+14+312+412+…+
121+14+21-13+13-14+…+
-11-1
=1+14+12-1
=74-1
74
综上,对一切正整数
,有a11+a12+…+a1
7419.导学号99450258【解】1设a
的前
项和为S
,当q=1时,S
=a1+a1+…+a1=
a1;当q≠1时,S
=a1+a1q+a1q2+…+a1q
-1,①qS
=a1q+a1q2+…+a1q
,②①-②得,1-qS
=a1-a1q

∴S
=a1(11--qq
),∴S

aa1(1,11-q-=qq1
),,q≠1
2证明:假设a
+1是等比数列,则对任意的k∈N+,ak+1+12=ak+1ak+2+1,a2k+1+2ak+1+1=akak+2+ak+ak+2+1,a21q2k+2a1qk=a1qk-1a1qk+1+a1qk-1+a1qk+1∵a1≠0,∴2qk=qk-1+qk+1∵q≠0,∴q2-2q+1=0,∴q=1,这与已知矛盾.∴假设不成立,故a
+1不是等比数列.20.导学号99450259解1设等差数列a
的首项为a1,公差为d由S4=4S2,a2
=2a
+1,得4a1+6d=8a1+4d,
a1+(2
-1)d=2a1+2(
-1)d+1解得a1=1,
d=2因此a
=2
-1,
∈N2由题意知T
=λ-2
-1,
f所以当
≥2时,b
=T
-T
-1=-2
-1+
2-
-12=
2-
-21故c
=b2
=22
2-
-12=
-114
-1,
∈N所以R
=0×140+1×141+2×1r
好听全球资料 返回顶部