全球旧事资料 分类
学生观察、思考、发现:当矩形的一边变化时,另一边和面积也随之改变。深入探究如设矩形的一边长为x米,则另一边长为4x米,再设面积为ym2则它们的函数关系式为yx4x
2
x04xo
0x4
并当x2时(属于0x4范围)即当设计为正方形时,面积最大4m2引导学生总结,确定问题的解决方法:在一些涉及到变量的最大值或最小值的应用问题中,可以考虑利用二次函数最值方面的性质去解决。步骤:第一步设自变量;第二步建立函数的解析式;第三步确定自变量的取值范围;第四步根据顶点坐标公式或配方法求出最大值或最小值(在自变量的取值范围内)。三、例练应用,解决问题在上面的矩形中加上一条与宽平行的线段,出示图形设问:用长为8m的铝合金条制成如图形状的矩形窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大面积是多少?引导学生分析,板书解题过程。变式(即课本例1):现在用长为8米的铝合金条制成如图所示的窗框(把矩形的窗框改为上部分是由4个全等扇形组成的半圆,下部分是矩形),那么如何设计使窗框的透光面积最大?(结果精确到001米)
16
f练习:课本作业题第4题四、知识整理,形成系统这节课学习了用什么知识解决哪类问题?解决问题的一般步骤是什么?应注意哪些问题?学到了哪些思考问题的方法?五、布置作业:作业本
课题:264二次函数的应用2
教学目标:1、继续经历利用二次函数解决实际最值问题的过程。2、会综合运用二次函数和其他数学知识解决如有关距离等函数最值问题。3、发展应用数学解决问题的能力,体会数学与生活的密切联系和数学的应用价值。教学重点和难点:重点:利用二次函数的知识对现实问题进行数学地分析,即用数学的方式表示问题以及用数学的方法解决问题。难点:例2将现实问题数学化,情景比较复杂。教学过程:一、复习:1、利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:1列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围。2在自变量取值范围内,运用公式或配方法求出二次函数的最大值和最小值。2、上节课我们讨论了用二次函数的性质求面积的最值问题。出示上节课的引例的动态图形(在周长为8米的矩形中)(多媒体动态显示)
17
f设问:(1)对角线(L)与边长(x)有什何关系?
l2x24x2l2x26x90x4
(2)对角线(L)是否也r
好听全球资料 返回顶部