全球旧事资料 分类
2013年江苏高考数学模拟试卷(十)
第1卷(必做题,共160分)
一、填空题:本大题共14小题,每小题5分,共70分1已知URAx1x0,则CUA2“x2x2”是“x
x2”的
条件.(填“充分不必要”,“必要不充分”,“充Readx0Iff4xx
要”,“既不充分也不必要”.)
z3若z1a2iz234i,且1为纯虚数,则实数az2
4.如右图,给出一个算法的伪代码,则f3f2

The

Else
xf2x
5.已知等差数列a
的公差d不为0,且a1a3a7成等比数列,则
a1d
Prfxi
t
E
d
If
6.等腰RtABC中,斜边BC42,一个椭圆以C为其中一个焦点,另一个焦点在线段AB上,且椭圆经过AB两点,则该椭圆的离心率为
7.高三(1)班共有56人,学号依次为1,2,3,┅,56,现用系统抽样的办法抽取一个容量为4的样本,已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为
8.设PABC是球O表面上的四个点,PAPBPC两两垂直,PA1PB则球O的体积为
6PC3,
2xm129.已知函数fx是奇函数且fa2af3,则a的取值范围x21
是10.知si
x

6

15,则si
xsi
2x463

11.△ABC中,AB2,BC4,B60.设O是△ABC的内心,若AOpABqAC,则
p的值为q

12.fxx22mxmgx2x.若对任意x12,总存在x22,
13
1x
12
12
f使得fx1gx2则m的取值范围是
3322
13.xy是两个不相等的正数,且满足xyxy,xy的最大值为则9中x表示不超过x的最大整数).
(其
14.已知各项均为正数的两个数列由表下给出:定义数列c
:c1
0,

a
b

111
256
332
41
52
c
1a
b
235,并规定数列c
c
1a
b
c
1a
a
b
的“并和”为Saba1a2a5c5.若Sab15,
则y的最小值为
x
y
二、解答题:本大题共6小题,共90分15(本小题满分14分)在锐角三角形ABC中si
A(1)求ta
B的值(2)若CACBmBABC求m的值.
31ta
AB.53


16(本小题满分14分)如图,在正三棱柱ABCABC1中,点D在棱BC上,ADC1D.11abc求证:AD平面BCC1B1;设点E是BC1的中点,求证:AE平面ADC1.11设点r
好听全球资料 返回顶部