全球旧事资料 分类
第十一章:全等三角形
一、基础知识
1全等图形的有关概念(1)全等图形的定义能够完全重合的两个图形就是全等图形。例如:图131和图132就是全等图形
图131
图132(2)全等多边形的定义两个多边形是全等图形,则称为全等多边形。例如:图133和图134中的两对多边形就是全等多边形。
图133
图134
(3)全等多边形的对应顶点、对应角、对应边两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
(4)全等多边形的表示例如:图135中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。
B
A
A’
C
B’C’
E
D
E’
D’
图135表示图形的全等时,要把对应顶点写在对应的位置。
(5)全等多边形的性质全等多边形的对应边、对应角分别相等。
f(6)全等多边形的识别多边形相等、对应角相等的两个多边形全等。2全等三角形的识别(1)根据定义若两个三角形的边、角分别对应相等,则这两个三角形全等。
(2)根据SSS如果两个三角形的三条边分别对应相等,那么这两个三角形全等。相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
(3)根据SAS如果两个三角形有两边机器夹角分别对应相等,那么这两个三角形全等。相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
(4)根据ASA如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
(5)根据AAS如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3直角三角形全等的识别(1)根据HL如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
(2)SSS、SAS、ASA、AAS对于直角三角形同样适用。判断两个直角三角形全等的方法可分为:已知一锐角和一边或已知两边。
4证明三角形全等的方法证明三角形全等的一般方法有四种:“SSS”、“SAS”、“ASA”、“AAS”。每一种都有给出三个独立的条件,在具体问题中,题设往往只给出一个或两个条件,其余的需要我们自己去发掘和证明。判定方法的选择:
已知条件一边对应一角对应相等
两角对应相等两边对应相等
可选择的判定方法SASAASASAASAAASSASSSS
具体地说r
好听全球资料 返回顶部