1
1
1
2
1
所以数列
1
b
的前
项和为
2
1
19解:1依题意,得a1+a1+a1q=2a1+a1q+a1q2∵a10,∴2q2+q=0又q0,∴q=-12
f2由已知,得
a1-a1
122
3
,∴
a1=4
∴
S
=
4
11
1212
83
1
12
2
20解:1∵
a1+3a2+32a3+
+3
-1a
=
3
,
①
∴当
≥2时,a1+3a2+32a3+
+3
-2a
-1
=
13
②
①-②,得3
-1a
=13,∴
a
=
13
(
≥2)
1又a1=3满足上式,∴
a
=
13
N.
2∵
b
=
a
,∴
b
=
3
∴S
=3+232+333++
3
③
∴3S
=32+233++
-13
+
3
+1④
③-④,得-2S
=3+32+33++3
-
3
+1
313
3
+1=33
-1-
3
+1=3
1-3-
3
+1
13
2
22
∴
S
=-34
1
34
3
12
,∴
S
=2
13
14
34
N
fr