向量知识解决立体几何问题的能力.本小题满分14分.解法1(向量法):以D为原点,以DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系
Dxyz如图,
D1zA1
C1B1
D
C
y
B
A
x
则有A2,0,,0B2,2,,0C0,2,,0A11,0,,2B111,,,2C10,1,,2D10,0,2.(Ⅰ)证明:∵AC,,,0AC2,2,,0D1B111,,,0DB2,2,0.1111
∴AC2AC,DB2D1B1.11
∴AC与AC11平行,DB与D1B1平行,
BD共面.于是AC11与AC共面,B1D1与
(Ⅱ)证明:DDAC2,2,02,2,00,,0,22,2,00,DB1AC0
∴DD1AC,DBAC.
DD1与DB是平面B1BDD1内的两条相交直线.
∴AC平面B1BDD1.
f又平面A1ACC1过AC.
∴平面A1ACC1平面B1BDD1.
(Ⅲ)解:AA,0,,2BB11,1,,2CC10,1,2.11设
x1,y1,z1为平面A1ABB1的法向量,
AA1x12z10,
BB1x1y12z10.
于是y10,取z11,则x12,
2,0,1.设mx2,y2,z2为平面B1BCC1的法向量,
mBB1x2y22z20,mCC1y22z20.
2,1.于是x20,取z21,则y22,m0,
cosm,
m
1.m
5
1∴二面角ABB1C的大小为πarccos.5
解法2(综合法):(Ⅰ)证明:∵D1D平面A1B1C1D1,D1D平面ABCD.
D1A1
C1B1
∴D1DDA,D1DDC,平面A1B1C1D1∥平面ABCD.
于是C1D1∥CD,D1A1∥DA.A
D
F
M
C
E
O
B
,DC的中点,连结EF,A1E,C1F,设E,F分别为DA
有A,C1F∥D1D,DE1,DF1.1E∥D1D
∴A1E∥C1F,
于是AC11∥EF.由DEDF1,得EF∥AC,故AC11∥AC,AC11与AC共面.过点B1作B1O平面ABCD于点O,则B1O∥A1E,B1O∥C1F,连结OE,OF,
f于是OE∥B1A1,OF∥B1C1,∴OEOF.
∵B1A1A1D1,∴OEAD.∵B1C1C1D1,∴OFCD.
所以点O在BD上,故D1B1与DB共面.(Ⅱ)证明:∵D1D平面ABCD,∴D1DAC,又BDAC(正方形的对角线互相垂直),
D1Dr