11分类加法计数原理与分步乘法计数原理(第一课时)教学设计
重庆市涪陵实验中学校罗艳一、教学内容解析(一)教材的地位和作用本节课是人教版《数学》选修23第一章第一节(第一课时)。分类加法计数原理与分步乘法计数原理是人类在大量的实践经验的基础上归纳出的基本规律,是解决计数问题的最基本、最重要的方法,它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法也贯穿在解决本章应用问题的始终,在本章中是奠基性的知识。返璞归真的看两个原理,它们实际上是学生从小学就开始学习的加法运算与乘法运算的推广,它们是解决计数问题的理论基础。从思想方法的角度看,运用分类加法计数原理解决问题是将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;运用分步乘法计数原理是将一个复杂问题的解决过程分解为若干“步骤”,先对每个步骤进行细致分析,再整合为一个完整的过程。这样做的目的是为了分解问题、简化问题。由于排列、组合及二项式定理的研究都是作为两个计数原理的典型应用而设置的,因此,理解和掌握两个计数原理,是学好本章内容的关键。(二)教学目标1.通过实例,能归纳总结出分类加法计数原理和分步乘法计数原理,经历从特殊到一般的思维过程,进一步提高学生学习数学、研究数学的兴趣;2.掌握分类加法计数原理与分步乘法计数原理,能说明两个计数原理的不同之处,能根据具体问题的特征、选择恰当的原理解决一些简单的实际问题,体现数学实际应用和理论相结合的统一美,经历从特殊到一般的思维过程;3.经历由实际问题推导出两个原理,再回归实际问题的解决这一过程,体会数学源于生活、高于生活、用于生活的道理,让学生体验到发现数学、运用数学的过程。(三)教学重点与难点重点:归纳地得出分类加法计数原理和分步乘法计数原理,能应用它们解决简单的实际问题。难点:正确地理解“完成一件事情”的含义;根据实际问题的特征、正确地区分“分类”或“分步”。二、学生学情分析:1认知基础:在学习必修2“古典概型”时突出了树形图、列举法在计数中的作用;在学习和生活中,我们会不自觉地使用“分类”和“分步”的方法来思考解决问题。2能力基础:高二学生有较强的观察能力和数学抽象概括能力。3可能障碍:一是应用原理的意识淡薄,二是不能根据问题的特征,正确地选择原理解决问题。三、教学策略分析:(一)教法分析对于两个计数原理,不仅仅在于规律本身,更在于学r