全球旧事资料 分类
点的南偏西607°方向,C点位于A点的南偏东661°方向.(1)求△ABC的面积;(2)景区规划在线段BC的中点D处修建一个湖心亭,并修建观景栈道AD,试求A、D间的距离.(结果精确到01米)(参考数据:si
532°≈080,cos532°≈060,si
607°≈087,cos607°≈049,
5
fsi
661°≈091,cos661°≈041,≈1414).
26.(12分)如图,已知二次函数yax2bx3(a≠0)的图象经过点A(3,0),B(4,1),且与y轴交于点C,连接AB、AC、BC.(1)求此二次函数的关系式;(2)判断△ABC的形状;若△ABC的外接圆记为⊙M,请直接写出圆心M的坐标;(3)若将抛物线沿射线BA方向平移,平移后点A、B、C的对应点分别记为点A1、B1、C1,△A1B1C1的外接圆记为⊙M1,是否存在某个位置,使⊙M1经过原点?若存在,求出此时抛物线的关系式;若不存在,请说明理由.
27.(14分)问题呈现:
如图1,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA上,AEDG,求
证:2S四边形EFGHS矩形ABCD.(S表示面积)
实验探究:某数学实验小组发现:若图1中AH≠BF,点G在CD上移动时,上
述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB
边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1.
如图2,当AH>BF时,若将点G向点C靠近(DG>AE),经过探索,发现:2S
四边形EFGHS矩形ABCDS

如图3,当AH>BF时,若将点G向点D靠近(DG<AE),请探索S四边形EFGH、S矩
6
f形ABCD与S
之间的数量关系,并说明理由.
迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AH>BF,AE>DG,S四边形EFGH11,HF,求EG的长.(2)如图5,在矩形ABCD中,AB3,AD5,点E、H分别在边AB、AD上,BE1,DH2,点F、G分别是边BC、CD上的动点,且FG,连接EF、HG,请直接写出四边形EFGH面积的最大值.
7
f2017年江苏省连云港市中考数学试卷
参考答案与试题解析
一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上.1.(3分)(2017连云港)2的绝对值是()A.2B.2C.D.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:2的绝对值是2.故选:B.【点评】此题考查了绝对值的性质,属于基础题,解答本题r
好听全球资料 返回顶部