案例展示
案例一:《两位数乘两位数》
【案例信息】
案例名称:人教版教材第六册《两位数乘两位数》讲课教师:史冬梅(北京市西城区黄城根小学,中学高级教师)
【教学设计】
教学目标1.理解两位数乘两位数乘法的算理,掌握算法,并能够正确进行计算。2.在引导学生经历发现两位数乘两位数计算方法的过程,体验算法多样化,用渗透数形结合的思想帮助学生理解计算道理。3.在学习中激发学生探索问题的愿望,使学生在不断的探索交流中深化对知识的认识。教学过程:一、教学前侧,在交流中初步掌握算法1.从生活情境中获取数学信息教师:从下面图中你了解了哪些信息?
学生读取主题图获得信息:每本12元,买14本,一共要付多少元?2.列式解决问题
f师:怎样求一共要付多少元?为什么要用乘法计算啊?
学生:每本书的价钱是12元12是每份数,买一样的书14本就表示有这样的14份,求一共是多少元?就是求14个12元是多少?
3.研究竖式计算
教师让学生尝试用竖式进行计算。(一人板演,师巡视寻找不同的算法)
由板书同学介绍竖式计算方法。
教师:在她说的计算过程中,我听到了几句乘法口诀,谁知道说的是那几句口诀?第一句、第二句、第三句、第四句、第五句、最后他还说了一句,把它们加起来就是168(教师画箭头,引导学生打手势,并板书算式)。
接着教师展示学生出现的错例:如12×1460;12×14188;12×141248。质疑“到底谁做得对啊?”
4.学生采用估算的方式排除不正确的结果。
学生:12×14不可能得60,因为12×10120,12×14的积一定大于120,证明60是错误答案。
学生:12×14不可能1248,因为12×100120012×14的积怎么会大于1200呢?显然1248是错误的。
学生对12×14118也提出质疑,证明这个答案是错误的。
教师建议再用计算器验证一下12×14的计算结果吧。
教师我们用计算器验证12×14的计算结果是168,我们又听了刚才板演学生的发言,大家还有什么问题?。(教师等待学生的反应)大家既然已经认可了,那咱们是不是就可以下课了?学生反映不能下课表现出与问题要研究不下课,你还想知道些什么啊?
二、借助模型,引导学生经历发现两位数乘两位数计算方法的全过程
1.让学生说出心中的疑问
学生:我早就会计算这样的题,但是不知道为什么这样写计算过程。
教师:问得好,做题做事我们不仅要关注结果,更要关注过程。
学生:数学家怎么发现这样计算的?是谁发明的?
教师:你不仅知道方法,还要了解方法背后的道理,要知其然还要知其所以然。
f学生:除了r