卷线性代数(
fx1x2a1xxa2235(12证明(1)方程组x3x4a3有解的充要条件是∑ai0六.(分)证明i1xxa445x5x1a5
(2)在有解的情况下,写出通解的结构证明:证明(1)
1100001100Ab001100001110001
11000a101100a2rrrrr5123400110a300011a4a500000
a1a2a3a45∑aii1
所以RA4………………………………………………………………………………4分方程组有解RARAb4(2)当方程有解时
即
∑a
i1
5
i
0………………………………………6分
1100001100Ab001100001100000
a11a2rr0340a3r2r3a4r1r2000
0001a1a2a3a41001a2a3a4…8分0101a3a40011a400000
a1a2a3a4x1x5a1a2a3a4xxaaaa2a3a425234…9分取x50,得原方组的特解为ηa3a4x3x5a3a4a4x4x5a4x01x1x5xx125,取x51,得齐次方程组的基础解系为ξ1………10分对应齐次方程组为x3x51x4x5x11a1a2a3a41a2a3a4通解为xk1a3a4a4110
k∈R…………………………………………12分
20072008学年第二学期考试卷线性代数(A卷)第6页共7页学年第二学期考试卷线性代数(
f61213七.9分)解矩阵方程AX2XB,其中A241,B22(31131
解:A2EXB………………………………………………………………………2分
412
由于A2E2
211≠0311
A2E1存在…………………………………4分
3151A2E1A2E528……………………………………7分A2E41623151310XA2EB52822r