《312椭圆的简单几何性质》教学案
知识与技能目标
了解用方程的方法研究图形的对称性;理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;掌握椭圆的标准方程、会用椭圆的定义解决实际问题;通过例题了解椭圆的第二定义,准线及焦半径的概念,利用信息技术初步了解椭圆的第二定义.
过程与方法目标
1复习与引入过程
引导学生复习由函数的解析式研究函数的性质或其图像的特点,在本节中不仅要注意通过对椭圆的标准方程的讨论,研究椭圆的几何性质的理解和应用,而且还注意对这种研究方法的培养.①由椭圆的标准方程和非负实数的概念能得到椭圆的范围;②由方程的性质得到椭圆的对称性;③先定义圆锥曲线顶点的概念,容易得出椭圆的顶点的坐标及长轴、短轴的概念;④通过P48的思考问题,探究椭圆的扁平程度量椭圆的离心率.〖板书〗§2.1.2椭圆的简单几何性质.
2新课讲授过程
i通过复习和预习,知道对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?
通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位
置.要从范围、对称性、顶点及其他特征性质来研究曲线的几何性质.
ii椭圆的简单几何性质
①范围:由椭圆的标准方程可得,y2b2
1
x2a2
0,进一步得:axa,同理
可得:byb,即椭圆位于直线xa和yb所围成的矩形框图里;②对称性:由以x代x,以y代y和x代x,且以y代y这三个方面来研究椭圆
的标准方程发生变化没有,从而得到椭圆是以x轴和y轴为对称轴,原点为对称中心;
③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫
做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫
做长轴,较短的叫做短轴;
④离心率:椭圆的焦距与长轴长的比ec叫做椭圆的离心率0e1,a
当e1时,ca,,b0当e0时,c0,ba
椭圆图形越扁
;椭圆越接近于圆
.
iii例题讲解与引申、扩展
f例4求椭圆16x225y2400的长轴和短轴的长、离心率、焦点和顶点的坐标.分析:由椭圆的方程化为标准方程,容易求出abc.引导学生
用椭圆的长轴、短轴、离心率、焦点和顶点的定义即可求相关量.
扩展:已知椭圆mx25y25mm0的离心率为e10,
5求m的值.
解法剖析:依题意,m0m5,但椭圆r