全球旧事资料 分类
2ex,令y′′0,得到x2................(3分)................
............(4当x∈∞2时,y′′0,曲线yxex是凸的.............分)当x∈2∞,y′′0,曲线yxex是凹的.............(5分).............
∴22e2是曲线yxex的拐点...................6分)..................(.
21.计算不定积分

212xexdx.x
解:

22112xexdx∫dx∫2xexdx.................分).................(1xx
2x∫exdx2...................(4分)...................
2
2xexC....................6分)....................(
2
第2页
f22.计算定积分

a0
x3a2x22dx,其中a0.
1
解:令xasi
t,dxacostdt,x0→a,t0→
π
2
..........分).........(1

a0
xaxdxa
32
122
5

π20
.................(3si
3tcos2tdt..................分)
a5∫2si
3tsi
5tdt................(4分)................
0
π
242a5a51.................(6分).................3515
另解:另解

a
0
...............(3x3a2x22dxa5∫2si
3tcos2tdt...............分)
0
1
π
a5∫2cos2t1cos2tdcost...........分)..........(4
0
π
11acos5tcos3t53
5
π20
2a5..........分).........(615
23.计算定积分
π40

π40
xta
xsec2xdx.
π
解:

xta
xsec2xdx∫4xd
0
1ta
2x...................2分)..................(2
π40
1xta
2x2

π40
π40
π1π2ta
xdx∫4sec2x1dx..分).(4280
πta
xx8

π2..............分).............(64
24.设函数fx在1∞连续,且满足fxr
好听全球资料 返回顶部