初二数学轴对称练习题
1.在平面直角坐标系中,点P(2,3),Q(3,2),请在x轴和y轴上分别找到M点和N点,使四边形PQMN周长最小.(1)作出M点和N点.(2)求出M点和N点的坐标.
4.已知:如图4,在ΔABC中,CE是角平分线,EG∥BC,交AC边于F,交∠ACB的外角(∠ACD)的平分线于G,探究线段EF与FG的数量关系并证明你的结论.
图4
2.如图2,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别为∠BAC、∠ABC的角平分线,求证:BQ+AQ=AB+BP.
5.如图5,过线段AB的两个端点作射线AM,BN,使AM∥BN,请按以下步骤画图并回答.(1)画∠MAB、∠NBA的平分线交于点E,∠AEB是什么角?(2)过点E任作一线段交AM于点D,交BN于点C.观察线段DE、CE,有什么发现?请证明你的猜想.(3)试猜想AD,BC与AB有什么数量关系?
图2图5
3.已知:如图3,AD是∠BAC的平分线,∠B=∠EAC,EF⊥AD于F求证:EF平分∠AEB.
6.已知:如图7-11,ΔABC中,AB=AC,∠A=100°,BE平分∠B交AC于E.(1)求证:BC=AE+BE;(2)探究:若∠A=108°,那么BC等于哪两条线段长的和呢?试证明之.
图3
图5
1
f7.如图6,已知ΔABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)求证:AF=BD.
10.已知:如图10,△ABC为等边三角形,延长BC到D,延长BA到E,使AE=BD,连接CE、DE.求证:CE=DE
图10图6
8.已知:如图7,四边形ABCD中,AC平分∠BAD,CD∥AB,BC=6cm,∠BAD=30°,∠B=90°.求CD的长______.
11.已知:如图8-10,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=4.(1)在AB边上求作点P,使PC+PD最小;
图7图119.(1)如图8,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC,求∠AEB的大小;、(2)求出(1)中PC+PD的最小值.图8
(2)如图9,△OAB固定不动,保持△OCD的形状和大小不变,将△OCD绕着点O旋转(△OAB和△OCD不能重叠),求∠AEB的大小.
图9
2
f11已知如图,AD是△BAC的平分线,E是BC延长线上的一点,∠EAC∠BEF⊥AD于点F求证EF平分∠AEB
AF
14如图,△ABC为等边三角形,DE两点分别在BCAC边上,AECDADBE相交于点PBQ⊥AD于点Q若PQ3PE1求AD的长。
A
E
B
D
C
E
P
QBDC
12已知:如图,在Rt△ABC中,∠ACB90°r