全球旧事资料 分类
都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。旋转前后两个图形的对应线段相等、对应角相等。注意:旋转后,原图形与旋转后的图形全等。3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。b图形平移三要素:原(2)设未知数,找(不等量)关系式;(4)解不等式组;检验并作答。2、在同一数轴表示不等式的解集。
fword
3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。这个点就是它的对称中心。4、中心对称与中心对称图形的区别与联系如果将成中心对称的两个图形看成一个图形,那么这个整体就是中心对称图形;反过来,如果把一个中心对称图形沿着过对称中心的任一条直线分成两个图形,那么这两个图形成中心对称。3.图形的平移、轴对称(折叠)、中心对称(旋转)的对比5、图案的分析与设计①首先找到基本图案,然后分析其他图案与它的关系,即由它作何种运动变换而形成。②图案设计的基本手段主要有:轴对称、平移、旋转三种方法。第四章分解因式
一、公式:1、mambmcmabc2、a
2
b2abab
3、a2abbab
22
2
二、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。1、把几个整式的积化成一个多项式的形式,是乘法运算2、把一个多项式化成几个整式的积的形式,是因式分解3、mambmcm(abc)4、因式分解与整式乘法是相反方向的变形。三、把多项式的各项都含有的相同因式,叫做这个多项式的各项的公因式提公因式法分解因式就是把一个多项式化成单项式与多项式相乘的形式找公因式的一般步骤:(1)若各项系数是整系数,取系数的最大公约数;(2)取相同的字母,字母的指r
好听全球资料 返回顶部