F1F2MF2
PF1PF2F2AF1F2F2A
2a2c2F2AF2AacF2A2
∴A与A2重合(2)设A1、A2为双曲线的左、右顶点,则△PF1F2的内切圆,必与A1A2所在的直线切于A2(或A1)证明:设A1A2切X轴于点A,与PF1切于M,PF2切于N
∵PF1PF22aPMMF1PNNF22a∵PMPNMF1NF2AF2∴F1AAF22a又F1AAF22c
∴AF2caA2F2,∴A与A2重合
注:可知,圆心在直线xa或直线xa上
5.(1)椭圆
x2a2
y2b2
1(a>b>o)的两个顶点为
A1a0
A2a0,与
y
轴平行的直线
交椭圆于
P1、P2时,A1P1与
A2P2交点的轨迹方程是
x2a2
y2b2
1
证明:设交点Sx0y0,P1m
,P2m
∵,KKKKP1A1
A1S
P2A2
P2S
∴
ma
y0x0a
y0
mama
y0y0x0ax0a
2a2m2
y02x02a2
max0a
又
m2
2
1
2
m21
2
b2
a2b2
b2
a2a2m2a2
f学习好资料
欢迎下载
∴y02x02a2
b2a2
x02a2
y02b2
1,即轨迹方程为
x2a2
y2b2
1
(2)双曲线
x2a2
y2b2
1(a>0b>0)的两个顶点为A1a0
A2a0,与
y
轴平行的
直线交双曲线于P1、P2时
A1P1与A2P2交点的轨迹方程是
x2a2
y2b2
1
证明:设交点Sx0y0P1m
P2m
∵,KKKKP1A1
A1S
P2A2
P2S
∴
ma
y0x0a
y0
mama
y0y0x0ax0a
2a2m2
y02x02a2
max0a
又m2a2
2b2
1
2b2
m2a2
1
2a2m2
b2a2
,
∴
y02x02a2
b2a2
x02a2
y02b2
1
即x2y21a2b2
6.(1)若
P0
x0
y0
在椭圆
x2a2
y2b2
1上,则过P0的椭圆的切线方程是
x0xa2
y0yb2
1
证明:求导可得:2x2yy
a2
b2
0∴
y
x0b2y0a2
,
∴切线方程:yy0
x0b2y0a2
xx0
y0ya2y02a2
xx0b2x02b2
y0ya2
xx0b2
x02b2
y02a2
a2b2∴
xx0a2
yy0b2
1
(2)若P0x0y0在双曲线
x2a2
y2b2
1(a>0b>0)上,则过P0
的双曲线的切线方程
是
x0xa2
y0yb2
1
证明:求导可得:2xa2
2yyb2
0
y
x0b2y0a2
,切线方程
y
y0
x0b2y0a2
xx0
x0xa2
y0yb2
1
7.(1)若
P0
x0
y0
在椭圆
x2a2
y2
b2
1外
,则r