=2
2
3
1=,∴a
=2
-32
a
综上所述,a
=5-2
或a
=2
-312.解1由题意得a1+da1+13d=a1+4d2,整理得2a1d=d2∵d0,∴d=2∵a1=1∴a
=2
-1
∈N+.111112b
===
-
+1,
a
+2
+2∴S
=b1+b2+…+b
1111111-+-+…+
-=223
+1211=1-
+12=
+
t假设存在整数t满足S
总成立,36又S
+1-S
=
+1
1-=0,
+
+
+
+
∴数列S
是单调递增的.1t1∴S1=为S
的最小值,故,即t94364又∵t∈Z,∴适合条件的t的最大值为8213.解由题意知a25=a1a17,即a1+4d=a1a1+16d.a5a1+4d-∵d≠0,由此解得2d=a1公比q===3∴ak
=a13
1a1a1k
+1k
+1-又ak
=a1+k
-1d=a,∴a13
1=a2121
f∵a1≠0,∴k
=23
1-1,-∴k1+k2+…+k
=21+3+…+3
1-
=3
-
-114.1证明由a1=S1=1,S2=1+a2,
-
3+2ta23+2t得a2=,=3ta13t又3tS
-2t+3S
-1=3t,①3tS
-1-2t+3S
-2=3t②①-②,得3ta
-2t+3a
-1=0∴a
2t+3=
=23,….3ta
-1
2t+3∴数列a
是一个首项为1,公比为的等比数列.3t2解由ft=12t+3212=+,得b
=fb=+b
-13t3t
-13
2∴数列b
是一个首项为1,公差为的等差数列.32
+12∴b
=1+
-1=332
+1543解由b
=,可知b2
-1和b2
是首项分别为1和,公差均为的等差数列.333于是b1b2-b2b3+b3b4-b4b5+…+b2
-1b2
-b2
b2
+1=b2b1-b3+b4b3-b5+b6b5-b7+…+b2
b2
-1-b2
+14=-b2+b4+…+b2
34154
+1=-
+32334=-2
2+3
.9
fr