0;由x00得由xdV0得于是
xdV0
C20
03VdC1dV0,即C100d260d60
03V002xdx60d60
143、写出下列静电场的边值问题:
电磁场习题解答
第6页
f(1)、电荷体密度为1和2(注:1和2为常数),半径分别为a与b的双层同心带电球体(如题143图(a));(2)、在两同心导体球壳间,左半部分和右半部分分别填充介电常数为1与2的均匀介质,内球壳带总电量为Q,外球壳接地(题143图b));(3)、半径分别为a与b的两无限长空心同轴圆柱面导体,内圆柱表面上单位长度的电量为,外圆柱面导体接地(题143图(c))。
电磁场习题解答
第7页
f解:(1)、设内球中的电位函数为1,介质的介电常数为1,两球表面之间的电位函数为2,介质的介电常数为2,则1,2所满足的微分方程分别为
21
选球坐标系,则
1,1
22
22
11211121rsi
12222r1rrrsi
rsi
21221122rsi
22222r2rrrsi
rsi
由于电荷对称,所以1和2均与、无关,即1和2只是r的函数,所以
121r1,2r1rr
定解条件为:分界面条件:1ra2电位参考点:2附加条件:1
r0
122r22rrr2
ra
;
1
1r
2
ra
2r
ra
rb
0;
为有限值
(2)、设介电常数为1的介质中的电位函数为1,介电常数为2的介质中的电位函数为2,则1、2所满足的微分方程分别为
21
选球坐标系,则
1,1
22
22
电磁场习题解答
第8页
f11211121r2si
20rr2rrsi
rsi
2
21221122r2si
20rr2rrsi
rsi
2
由于外球壳为一个等电位面,内球壳也为一个等电位面,所以1和2均与、无关,即1和2只是r的函数,所以
121r0,rr2r
2
122r0rr2r
2
分界面条件:12
由分解面条件可知12。令12,则在两导体球壳之间电r