全球旧事资料 分类
北师大版《数学》(八年级上册)知识点总结第一章勾股定理
第十八章勾股定理1勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2c2。2勾股定理逆定理:如果三角形三边长abc满足a2+b2c2。,那么这个三角形是直角三角形。勾股数:满
足a2b2c2的三个正整数,称为勾股数。
33经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的
逆命题。(例:勾股定理与勾股定理逆定理)
4直角三角形的性质
(1)、直角三角形的两个锐角互余。可表示如下:∠C90°∠A∠B90°
(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A30°
可表示如下:
BC1AB2
∠C90°
(3)、直角三角形斜边上的中线等于斜边的一半
∠ACB90°
可表示如下:
CD1ABBDAD2
D为AB的中点
5、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄
影和斜边的比例中项
∠ACB90°
CD2ADBD
AC2ADAB
CD⊥AB
BC2BDAB
6、常用关系式
由三角形面积公式可得:ABCDACBC
7、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三
是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,c有关
角形系
a2b2c2,那么这个三角形是直角三角形。
第二章实数
一、实数的概念及分类
1、实数的分类
正有理数
有理数零
有限小数和无限循环小数
实数
负有理数
正无理数
无理数
无限不循环小数
负无理数
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:
(1)开方开不尽的数,如732等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如

8等;(3)有特定结构的数,如01010010001…等;(4)某些三角函数值,如si
60o等
3
二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有ab0,ab,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(a≥0)。零的绝对值是它本身,也可看成它的相反数,若aa,则a≥0;若aa,则a≤0。3、倒数如果a与b互为倒数,则有ab1,反之亦成立r
好听全球资料 返回顶部