35,-15答案35,-15,或-35,15
三、解答题本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤
17.10分已知直线l经过点0,-2,其倾斜角为60°1求直线l的方程;2求直线l与两坐标轴围成三角形的面积.
解1依题意得斜率k=ta
60°=3
又经过点0,-2,故直线l的方程为y+2=3x-0,即3x-y-2=02由1知,直线l:3x-y-2=0在x轴、y轴上的截距分别为2和-2,故直线l
3
与两坐标轴围成的三角形的面积为
S=12×
2
23
×2=3
3
18.12分直线l在两坐标轴上的截距相等,且点P43到直线l的距离为32,求
直线l的方程.
解1当所求直线经过坐标原点时,设其方程为y=kx,由点到直线的距离公式,可
得
3
4k-3
2=
,解
1+k2
k=-6±32
14故所求直线的方程为y=-6±32
14x
xy2当直线不经过坐标原点时,设所求直线为a+a=1,即
x+y-a=0由题意可得
f4+3-a=32,解a=1,或a=13故所求直线的方程为x+y-1=0或x+y-13=0综2
上,可知所求直线的方程为y=-6±2314x,或x+y-1=0,或x+y-13=019.12分当m为何值时,直线2m2+m-3x+m2-my=4m-1
1倾斜角为π4;2在x轴上的截距为1解1倾斜角为π4,则斜率为1
2m2+m-3∴-m2-m=1解得m=1,或m=-1当m=1时,m2-m=0,不符合题意.当m=-1时,直线方程为2x-2y-5=0符合题意,∴m=-12当y=0时,x=2m42+m-m-13=1,解得m=-12,或m=2当m=-12,或m=2时都符合题意,∴m=-12,或m=220.12分求经过直线l1:3x+4y+5=0与l2:2x-3y-8=0的交点M,且满足下列条件的直线方程.1经过原点;2与直线2x+y+5=0平行;3与直线2x+y+5=0垂直.解由32xx+-43yy+-58==00,,得交点M的坐标为1,-2.1直线过原点,可得直线方程为2x+y=02直线与2x+y+5=0平行,可设为2x+y+m=0,代入M1,-2,得m=0∴直线方程为2x+y=03直线与2x+y+5=0垂直,
f∴斜率为k=12,又过点M1,-2.
故所求方程为y+2=12x-1.
即x-2y-5=0
21.12分已知两条直线l1:ax-by+4=0,l2:a-1x+y+b=0求分别满足下列条件的a和b的值.
1求直线l1过点-3,-1,并且直线l1与直线l2垂直;2直线l1与l2平行,并且坐标原点到l1,l2的距离相等.解1∵l1⊥l2,∴a-1a+-b×1=0
即a2-a-b=0①
又点-3,-1在l1上,∴-3a+b+4=0②
由①②解得a=2,br