r0
0
ar0
01T1故APA1A2ArP其中Ai即AP且秩P
TT
0ai0
1
A1PAiP
1
P
T
1
A2P
1
P
T
1
ArP
1
1
1
秩Ai1,i12r
4求下列二次型的最值:1fx1x2x3x12x1x22x24x2x34x3;
222
2fx1x2x3x1x2x1x3x2x3解:配方后有fx1x2x3x1x2x22x3,显然有最小值mi
01
22
2经配方后有fx1x2x3x1
12
x2x1
2
12
x31x2x32
22
54
x3显然无最值
2
习题831分别在复数域和实数域上求可逆线性替换,将下列二次型化为典范型:1fx1x2x3x13x1x25x2x3;
2
2fx1x2x3x14x1x22x1x34x2x3
222
解:在复数域上:fx1x2x3x11
32
x23x2i5ix323
22
259
x3
2
fy1x13x22令y23x2i5ix3235y33x3
x1y1iy2y32x23iy2y33x35y3
22222
得典范型fx1x2x3y1y2y3在实数域上:fx1x2x3x1y1x13x22令y23x25ix3235y33x3
32
x23x25x323
22
259
x3
2
2
得典范型fx1x2x3y1y2y3
222
2在复数域上:fx1x2x3x12x2x1x3ix1y1x12x2令y2x1x3yix31
22
得典范型fx1x2x3y1y2y3
22
2
在实数域上:fx1x2x3x12x2x1x3x1
y1x12x2令y2x1x3yx310解:A120010100
2
得典范型fx1x2x3y1y2y3
22
2
2求实二次型fx1x2x3x1x22x2x3的秩、惯性指标和符号差
12
010
01
00即有秩A20
22
x1y1y2令x2y1y2,xy33z1y1y3令z2y2y3
有fx1x2x3y1y3y2y3
有fx1xr