练习51
第五章不定积分习题答案
1是
2不是,1x2c为x2的全部原函数3
32xdxx2c,曲线为x2c,c为常数
4x2dx1x22xc,由已知,当x2时144c5
2
2
得c1,所以函数为y1x22x12
练习52
1.1x3x1x4c,c为任意常数4
2原式
11
x2x2dx
31
x22
dx
3
x4dx
4
7
x4
c
7
3
x
x42
dx1
x
4x2
11
1dx
x2
1
x
12
dx1
13
x3
x
ta
x
c
4
cot2xdx
cos2si
2
xdxx
1
si
2si
2x
xdx
1si
2
x
1dx
cotxxc
练习53
1
23xdx13
23xd3x
23x3l
2
c
2
x2
1
1x3dx3
1
1x3
d
x3
1
13
l
1
x3
c
3excosexdxcosexdexsi
exc
4
ta
3
xdx
ta
x
sec2
x
1dx
ta
xdta
x
si
cos
xdxx
12
ta
2
x
l
cos
x
c
5令
fxsi
t
dxcostdt
1dx
costcost1dtsec2tdtta
tc
1x23
1si
2t3
cos2t3cos2t
ta
arcsi
xc
6令
xsecttarcsecxdxsectta
tdt
x
1x2
dx1
secsec
tt
ta
ta
tt
dt
t
c
arc
sec
x
c
练习54
1xsi
xdxxdcosxxcosxcosxdxxcosxsi
xc
2
xl
xdx
l
x2xd
x2
l
x
x21dxx2l
xx2c
22
2x2
4
3
l
l
x
x
l
l
xdl
x
l
l
x
l
x
l
x
1dl
l
x
x
l
l
xl
x
l
x
c
练习55
12xdxx2c
因为过(1,3)求得c2,曲线方程为yx22
2dyxydyxdxy2x2c即x2y2r2
dxy
22
3
1ydx1xdydxdy积分得l
1xl
1yl
c1x1y
x11yc,yx11c
复习题五1判断题
(1)√2
2填空题
(3)(4)√(5)(6)√(7)
(1)l
1xc2exsi
x(3)l
l
xC(4)1x6C6
(5)x3y3c(6)1x
7283x2
9x21x4c2
f3选择题
(1)C2B4计算与应用题
(3)D(4)A(5)B(6)B(7)D
(1)
ex
dx
ex
1
12
d
ex
1
2
ex1c
ex1
(2)解:
exdx=12ex12
2e
1x
d1
2e
x
1
12
l
2ex
1
C
(3)解:1xdx=1xdx
1x2
1x21x2
1dx1
1x2
2
1d1x21x2
=arcsi
x
1
21
1
x22
C
arcsi
x
1x2C
2
4解:
xarcta
xdx=
arcta
xd1x21x2arcta
x1
2
2
2
x2dx1x2
1x2arcta
x1
2
2
1
11x2
dx
1x22
arcta
x
12
x
12
arcta
x
C
(5)解:
x4dx=1x2
x411dx1x2
x211dx1x3xarcta
xC
1x2
3
(6)
1
x2x2
dx
1
11x2
dx
x
arcta
x
c
(7)解:xex2dx=1ex2dx21ex2C
2
2
(8)解:
ydy
exdx
ex1
两边积分得
1y2l
ex1l
C2
y22l
Cex1C为任意常数
yx10
C11e
y22l
1ex1e
(9)解:1ydx1xdy
即dydx两边积r