、规则和命题;能够运用多种形式表示
数学命题的条件与结论,并建立相关命题的联系;能够理解和构建相关数
学知识之间的联系(知识与技能)。
能够用准确的数学语言表达学过的数学概念、规则、命题与模型;能
够提炼出解决一类问题的数学方法,理解其中的数学思想(思维与表达)。
在交流的过程中,能够用一般的概念解释具体现象(交流与反思)。
拓展水平:
能够在科学情境中抽象出数学问题,并用恰当的数学语言予以表达;
能够在数学结论基础上形成新命题;能够创造或灵活运用数学方法解决
问题(问题与情境)。
能够通过数学对象及其运算或关系理解数学的抽象结构;能够理解
数学结论的一般性;能够感悟高度概括、有序多级的数学知识体系(知识
与技能)。
在现实问题中,能够把握研究对象的数学特征,并用准确的数学语言
予以表达;能够感悟通性通法背后的数学原理和其中蕴含的数学思想(思
维与表达)。
在交流的过程中,能够用数学原理解释自然现象和社会现象(交流与
反思)。
(2)逻辑推理:
内涵:
逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题
的思维过程,主要包括两类,一类是从小范围成立的命题推断更大范围内
成立的命题的推理,主要有归纳、类比;一类是从大范围成立的命题推断
小范围内也成立的推理,主要有演绎推理。命题是数学结论的主要形式,
也是数学交流的主要内容,因此,逻辑推理是数学交流的基本品质,使数
f学交流具有逻辑性。
学科、教育价值:
逻辑推理是数学思维的主要形式,是发现、提出数学命题以及论证命
题正确与否的重要手段,也是构建数学体系的重要方式。逻辑推理不仅保
证了数学的严谨性,也保证了数学交流的严谨性。
逻辑推理是数学教学活动的核心,也是培养科学素养的重要途径。逻
辑推理核心素养的习得,可以使人们的交流合乎逻辑,提高交流的效率和
效果。在数学教学活动中,注重逻辑推理核心素养的培养,有利于学生理
解一般结论的来龙去脉、形成举一反三的能力,有利于学生形成有论据、
有条理、合乎逻辑的思维习惯和交流能力,有利于学生提高探究事物本源
的能力。
表现:
发现和提出命题
掌握推理的基本形式和规则
探索和表述论证的过程
构建命题体系
表达与交流
高中毕业水平:
能够在生活情境中,发现数量或图形方面的规律性,用归纳或类比提
出数学命题。
能够在具体的数学内容中,判断什么是归纳、类比推理r