一、多元回归
1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:yl
x可以转化为yuul
x来解决;所以这里主要说明多元线性回归应该注意的问题。3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过sas和spss来解决)(2)回归系数的显著性检验(可以通过sas和spss来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验
f(5)进行后继研究(如:预测等)这种模型的的特点是直观,容易理解。这体现在:动态聚类图可以很直观地体现出来!当然,这只是直观的一个方面!
二、聚类分析
聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可变法(8)利差平均和法在具体做题中,适当选取方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。还需要注意的是:如果总体样本的显著性差异不是特别大的时候,使用的时候也要注意!4、方法步骤(1)首先把每个样本自成一类;(2)选取适当的衡量标准,得到衡量矩阵,比如说:距离矩阵或相似性矩阵,找到矩阵中最小的元素,将该元素对应的两个类归为一类,(4)重复第2步,直到只剩下一个类;补充:聚类分析是一种无监督的分类,下面将介绍有监督的“分
f类”。我简单说明下,无监督学习和有监督学习是什么无监督学习:发现的知识是未知的而有监督学习:发现的知识是已知的或者这么说吧:有监督学习是对一个已知模型做优化,而无监督学习是从数据中挖掘模型他们在分类中应用比较广泛(非数值分类)如果是数值分类就是预测了,这点要注意
三、数据分类
1、方法概述数据分类是一种典型的有监督的机器r