全球旧事资料 分类
个数学命题,当用直接证法比较困难甚至不能证明时,往往采用间
接证法,反证法就是其中一种,当一个命题涉及“一定”“至少”“至多”“无限”“唯一”等
情况时,由于结论的反面简单明确,常常用反证法来证明
(2)“推理”必须顺着假设的思路进行,即把假设当作已知条件,“得出矛盾”是指推出与定义、基本事实、已有定理或已知条件相矛盾的结果
知识点6等边三角形的判定定理
内容
判定定理1
三个角都相等的三角形是等边三角形
判定定理2
有一角是60度的等腰三角形是等边三角形
解读
应用判定定理2时,证三角形是等腰三角形,且三角形中有一角为60°
拓展
判定一个三角形是等边三角形的方法有三个:(1)三边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角等于60°的等腰三角形是等边三角形。注意要更根据条件和特征灵活选择判定方法
巧计乐背
三种方法证等边,定义与两个判定,判定2可先证等腰,再找60°角
知识点7线段的垂直平分线的性质及判定
内容
性质定理
线段的垂直平分线上的点到这条线段两个端点的距离相等
判定定理
到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
实例应用:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等(交点是外接圆圆
心)
知识点8角平分线的性质及判定
内容
性质定理
角平分线上的点到这个角的两边的距离相等
判定定理
在一个角的内部,到角的两边距离相等的点在这个角的平分线上
实例应用:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等(交点是内切圆圆心)
fr
好听全球资料 返回顶部