全球旧事资料 分类
率都是相同的,我们从相识生活的经验可知,整批次上万个罐头逐一检验确定产品的次品率,在时间上、成本上都是不现实的。这样的等概率计算可以保障工厂,在只抽检9个罐头产品的情况下,对该批次上万个罐头的产品质量进行估计,大大节省了质量检验的时间,同时,一定程度上保障了质量检验的科学性。
(二)概率论与数理统计在密码问题中的应用
密码问题也是我们生活中的常见问题,当下,每个人都拥有多种电子设备芯片存储卡,为了保障电子设备和卡片的安全性,我们常常设置不同的密码,但往往会在使用中忘记完整的密码,以及具体的密码和设备与卡片之间的搭配。应用概率论与数理统计的知识,我们可以将琐碎的密码信息进行随机排列组合,有计划的进行密码尝试,破解被我们忘记的密码。
例2:丹丹为母亲李女士购买了一台新型智能手机,李女士岁手机进行密码设置之后,不慎将密码遗忘,只记得密码的四个数字是5,8,6,3,丹丹进行解锁尝试,有多大的可能一次就将密码解开?(正确密码为3,5,6,8)
解:事件A为丹丹一次尝试解锁就可以将设备解开
3,5,6,8出现在设备锁中的第1,2,3,4位置为事件A1A2A3A4,
P(A)P(A1A2A3A4)
P(A1)P(A2A1)P(A3A1A2)P(A4A1A2A3)
1413121
124
所以,丹丹一次尝试就能成功解开手机的概率为124。丹丹在经过概率计算之后再进行设备解锁,可以在解锁中平心静气,认真记录每次解锁的数值,坚定解锁过程的信心,按照不同的数字组合顺序依次解锁,避免解锁中的重复尝试造成的时间精力的浪费,更快找到正确的密码。
(三)概率论与数理统计在时效性问题中的应用
f龙源期刊网httpwwwqika
comc
时效性问题是生产生活中常见的问题,例如我们与朋友相约见面、生产中多种原料的综合投产、多种药品同时服用的相互影响作用、护肤产品的保质期限与使用间隔时间等问题,都属于时效性问题。应用几何概率模型,能够有效的帮助我们解决生活中遇到的时效性问题,帮助我们更加科学合理的安排与计划时间,增加对物料使用的利用效率。
例3:同学甲和同学乙约定上午9时到11时在南湖公园一起玩耍,不论谁先到都在公园门口等对方30分钟,如果30分钟后对方仍没有来,就先进入公园,按照公园的游览路线独自游览,在这样的情况下,二人在南湖公园门口见面的几率有多大?
解:假设甲同学到达南湖公园的时间为x,乙同学到达公园的时间为y,两人在南湖公园门口见面为事件A,那么事件A实现的条件为xy≤30
P(A)(1201209090)120120
04375
由r
好听全球资料 返回顶部