全球旧事资料 分类
识就更加混乱了,但我们可以运用数学的思想来解决这个问题,即尽可能少的运用公理(常识),但又必须建立在公理(常识)的基础上。
如果说公理化是数学教给我们的第一个思想,那么“等价转换”就是数学
f教给我们的第二个思想。等价转化是把未知解的问题转化到在已有知识范围内的思想方法。即通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。“解题就是把要解题转化为已经解过的题”数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。这种思维运用在现实生活中,就是从不同的角度去看待问题,最后寻找到“最佳角度”;又或者说是“换位思考”,“思维转移”。我的一位表哥曾经对我说:“很久没学数学,感觉人都变笨了”。这种“笨”,正是指“思维转移”“变换角度”的“笨”,数学就是思维的不断转移和变换,在这种变换中,我们需要遵守遵循熟悉化、简单化、直观化、标准化的原则。
数学教给我们第三个思想,是分类讨论的思想。在高中数学中,我们经常遇到的问题是需要考虑a0、a=0、a0之类情况的数学题。即将问题分类讨论。运用在生活中,就是考虑可能发生的各种不同情况,并提出具体的策略和应对方法。分类讨论能让我们更全面地考虑问题,也能让我们更好地解决问题。
数学教给我们的第四个思想,是概率的思想。概率在生活中是一种不确定性的东西,但我们都知道,概率服从大数定理与中心极限定理。说到极限,我们先说无穷小与无穷大的概念。前几天在QQ群中聊天讨论,有人说:“无穷小就是零”。即……00010,这听起来似乎没什么错,但实际上却错得很离谱。在生活中,我们遇到问题都是在一定的范围内讨论的。比如,我们说这把尺子是一米长,这是一个确定性的概念,也是一个近似的概念。准确的说,世界上不存在任何一把尺子是一米长,这把尺子长度可能位于米之间。在实际运用中,我们会根据需要决定精确度(当然,国际上会规定一米的长度为多少,
f这个规定是一个确切的数)。学过计算机网络的人都知道,绝对可靠的通讯系统是不存在的,这会陷入无穷验证的困境,所以在实际应用中,人们仅仅只用了“三次握手协议”,因为这已经足够了。在现实生活中,我们可以认为,无穷小就是零,但在数学上,无穷小只能是“无限接近于零”,“一尺之锤,日取其半,万世不竭”,无穷小是一个变量而不是一个确切的数。概率在生活中无处不在,很多人都喜欢将概率看作是一种确定性的分析,但实际上r
好听全球资料 返回顶部