6M2M
x5
bθ
M
011112
1
8
8
M8M
0
0112
152
M665M2
0
x1
x2
x3
x4
x5
0
112
00
52
将本解代入所有约束中发现,不满足约束2,所以本题无可行解。
(2)解:
mi
f4x13x20x30x40x5Mx6Mx7Mx8
2x1
12
x2
x3
x6
10
x1x2x4x78
x1x5x82
x1x2x3x4x5x6x7x80
次
数XB
CB
x14
x23
x3
x4
x5
x6
0
0
0
M
x7
x8
M
M
x6M
2
12
1
0
0
1
0
0
0x7M
1
1
0
1
0
0
1
0
x8M1
0
0
0
1
0
0
1
z
4M3M2
M
MM
M
M
M
σ
44M33M2
M
M
M
0
0
0
x6M
0
12
1
02
1
0
2
1x7M
0
1
0
1
1
0
1
1
x14
1
0
0
0
1
0
0
1
z
4
3M2
M
M3M4
M
M3M4
σ
033M2
M
M43M
0
04M4
2x50
0
14
12
0
1
12
0
1
x7M
0
34
12
1
0
12
1
0
bθ
1058822
20M
63662
12M8
31234
fx14zσx503x23x14zσ
1
14
12
0
0
12
0
0
413M42M2M
02M2
M
0
023M42M2
M
023M20
M
0
0
23131
23131
0
1
23430
2343
0
1
0
23130
23130
4
3
231630
23
83
0
0
0
1131630M23M83M
520
203M
244
28
(4)解:
x1x2x3x4x5x6x7x844002000Z28
maxZ2x1x2x3Mx54x12x22x3x4x542x14x2x6204x18x22x3x716x1x2x3x4x5x6x70
次数XBCB
x12
x21
x3
x4
1
0
x5
x6x7
bθ
M00
x5M4
2
21
10041
0x602
4
0
0
0102010
x70
4
8
2
0
001164
z
4M2M2MM
000
4M
σ
24M12M12M0
000
x12112121414001
1x600
311212101836
x70
0
6
0
1
1011212
z
2
1
1121200
2
σ
0
0
012M1200
x12
1
2120
00144
2x600
0
1
0
011212
x40
0
6
0
1
10112
z
2
4
1
0
0012
8
σ
4
3
0
0
M012
x1x2x3x4x5x6x7400120120Z8
由于存在非基变量检验数为0,所以本题有无穷多解。
f第6章单纯形法的灵敏度分析与对偶
1(1)x1为非基变量,所以只要保证1c1z10即可。1c1240c124。(2)x2为基变量,所以有:
m
ax
a2
jj
a2j
0
c2
m
i
a2
jj
a2j
0
max
21
81
c2
c22
c26
s(3)2为非基变量,所以只要保证s2cs2zs20即可。s2cs280cs28。
2解:第五章习题5(2)最终表为:
次数XBCB
x11
x2
x3
x4
210
x50
x6
b
θ
0
x405210112081x31121101204
X60122001211
z
12110120
4
σ
32100120
(1)
x1为非基变量,所以只要保证1
c1
z1
0即可。1
c1
12
0
c1
12
。
(2)x3为基变量,所以有:
max
a3
jj
a3j
0
c3
mi
a3
jj
a3j
0
max
11
cr