全球旧事资料 分类
算法简介最佳线性滤波理论起源于40年代美国科学家Wie
er和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalma
把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。
卡尔曼滤波简介说明及其算法MATLAB实现代码
卡尔曼滤波算法实现代码(C,C++分别实现)
卡尔曼滤波器简介近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所
能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。
f卡尔曼滤波器Kalma
Filter
1.
什么是卡尔曼滤波器
(WhatistheKalma
Filter)
在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人!
卡尔曼全名RudolfEmilKalma
,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《ANewApproachtoLi
earFilteri
ga
dPredictio
Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载:httpwwwcsu
ceduwelchmediapdfKalma
1960pdf。
简单来说,卡尔曼滤波器是一个“optimalrecursivedataprocessi
galgorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。
2.卡尔曼滤波器的介绍(I
troductio
totheKalma
Filter)
为了可以更加容易的理解卡尔曼滤波器,这里会r
好听全球资料 返回顶部