法优越,它用递推法计算,不需要知道全部过去的数据,从而运用计算机计算方便,而且它可用于平稳和不平稳的随机过程信号,非时变和时变的系统。但从发展历史上来看维纳过滤的思想是40年代初提出来的,1949年正式以书的形式出版。卡尔曼过滤到60年代初才提出来,它是在维纳过滤的基础上发展起来的,虽然如上所述它比维纳过滤方法有不少优越的地方,但是最佳线性过滤问题是由维纳过滤首先解决的,维纳过滤的物理概念比较清楚,也可以认为卡尔曼滤波仅仅是对最佳线性过滤问题提出的一种新的算法。卡尔曼滤波在数学上是一种统计估算方法,通过处理一系列带有误差的实际量测数据而得到的物理参数的最佳估算。例如在气象应用上,根据滤波的基本思想,利用前一时刻预报误差的反馈信息及时修正预报方程,以提高下一时刻预报精度。作温度预报一般只需要连续两个月的资料即可建立方程和递推关系。
fEKF扩展卡尔曼滤波仅仅利用了非线性函数Taylor展开式的一阶偏导部分(忽略高阶项),常常导致在状态的后验分布的估计上产生较大的误差,影响滤波算法的性能,从而影响整个跟踪系统的性能。最近,在自适应滤波领域又出现了新的算法无味变换Kalma
滤波器(U
sce
tedKalma
FilterUKF)。UKF的思想不同于EKF滤波,它通过设计少量的σ点,由σ点经由非线性函数的传播,计算出随机向量一、二阶统计特性的传播。因此它比EKF滤波能更好地逼近状态方程的非线性特性,从而比EKF滤波具有更高的估计精度。上面这段文字所体现出的UKF与EFK的具体区别能否详细的总结一下。另外还想请教一下,无味卡尔曼的具体算法时什么?以及与扩展卡尔曼以及卡尔曼的区别。我在GOOGLE上搜了很多,基本都时卡尔曼滤波的算法,很少涉及UKF方面的具体算法,一些论文网站的部分论文还收费,所以对于UKF还是非常不明白。另外还想请教一下UKF的发展历程以及目前国内外研究现状。EKF是对非线性系统模型(方程)进行的线性化近似,以利用KF算法进行滤波估计。而UKF是对状态的概率统计近似,即设计少量的σ点,由σ点经由非线性函数的传播,计算出随机向量一、二阶统计特性的传播,对于高斯噪声的假设,UKF能够达到三阶估计精度,而EKF只能达到二阶精度,但其算法仍然是利用KF的算法。现在国内外的文献大都是对UKF算法的改进和应用进行论述,但对算法的稳定性等没有系统的论述。我了解得沈阳自动化所做的这方面的工作很多。参考资料:TheU
sce
tedKalma
FilterforNo
li
earEstimatio
pdf
卡尔曼滤波r