全球旧事资料 分类


全等三角形证明经典50题含答案
1:AB4,AC2,D是BC中点,AD是整数,求ADA
B
C
D
解:延长AD到E使ADDE∵D是BC中点∴BDDC在△ACD和△BDE中ADDE∠BDE∠ADCBDDC∴△ACD≌△BDE∴ACBE2∵在△ABE中ABBE<AE<ABBE∵AB4即42<2AD<421<AD<3∴AD2
2:D是AB中点,∠ACB90°,求证:CD1AB2
A
D
C
B
延长CD与P,使D为CP中点。连接APBP∵DPDCDADB∴ACBP为平行四边形又∠ACB90∴平行四边形ACBP为矩形∴ABCP12AB
3:BCDE,∠B∠E,∠C∠D,F是CD中点,求证:∠1∠2

v

f

A12
B
E
C
F
D
证明:连接BF和EF∵BCEDCFDF∠BCF∠EDF∴三角形BCF全等于三角形EDF边角边∴BFEF∠CBF∠DEF连接BE在三角形BEF中BFEF∴∠EBF∠BEF。∵∠ABC∠AED。∴∠ABE∠AEB。∴ABAE。在三角形ABF和三角形AEF中ABAEBFEF∠ABF∠ABE∠EBF∠AEB∠BEF∠AEF∴三角形ABF和三角形AEF全等。∴∠BAF∠EAF∠1∠2。4:∠1∠2,CDDE,EFAB,求证:EFAC
A12
F
CDEB
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGDDE=DC∠FDE=∠GDC〔对顶角〕∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1

v

f

∠1∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5:AD平分∠BAC,ACABBD,求证:∠B2∠C
A
证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD〔SAS〕∴∠E=∠C∵AC=ABBD∴AE=ABBD∵AE=ABBE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6:AC平分∠BAD,CE⊥AB,∠B∠D180°,求证:AEADBE

v

f

证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC〔SAS〕∴AD=AF∴AE=AF+FE=AD+BE7:AB4,AC2,D是BC中点,AD是整数,求AD
A
B
C
D
解:延长AD到E使ADDE∵D是BC中点∴BDDC在△ACD和△BDE中ADDE∠BDE∠ADCBDDC∴△ACD≌△BDE∴ACBE2

v

f

∵在△ABE中ABBE<AE<ABBE∵AB4即42<2AD<421<AD<3∴AD2
8:D是AB中点,∠ACB90°,求证:CD1AB2
A
D
C
B解:延长AD到E使ADDE
∵D是BC中点∴BDDC在△ACD和△BDE中ADDE∠BDE∠ADCBDDC∴△ACD≌△BDE∴ACBE2∵在△ABE中ABBE<AE<ABBE∵AB4即42<2AD<421<AD<3∴AD2
9:BCDE,∠B∠E,∠C∠D,F是CD中点,求证:∠1∠2

v

f

A12
B
E
C
F
D
证明:连接BF和EF。∵BCEDCFDF∠BCr
好听全球资料 返回顶部