第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:1算术平方根的概念,式子a中的双重非负性:一是a≥0,二是a≥0.2算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.3求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.
第六环节:作业布置习题23
f四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x的平方等于a,即xa,那么这个正数x就叫做a
2
的算术平方根,”的“正数x”,即被开方数是正的,由平方的意义,a也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用2.发展思维、适度拓展在教学中,根据学生的实际情况,在学有余力的情况下,可以对a的双重非负性的知识进行适当的拓展
fr